

Electrical Engineering Through Modern Tools: An OBE Approach

- **DATE:** 11 JULY 2017
- **Platform:** IUCEE
- **Form of Delivery:** Webinar
- **Target Audience:** Teachers Imparting Technical Education

Objective:

1. Create awareness towards national education goals among teachers
2. Role & Necessity of OBE in Curriculum Development
MITRABINDA SINGH (Asst. Prof, MBA) on

Outcome-based Learning in Engineering Education
Section -1 : by MITRABINDA SINGH

- What is Outcome-based Education (OBE) ?
- Difference between OBE & Traditional Education
- When to implement OBE ?
- Importance of OBE in Technical Education
“The technology changes are fast arriving than education is preparing to cope up with. We therefore need to tackle this situation with new ideas and adapt the education to the changing needs.” (Reddy & Reddy, 2014)
“Outcome” explained by Spady, 1994

“an outcome is not a collection or average of previous learning experiences, but a manifestation of what learners can do once they have had and completed all of those experiences”
“Starting with a clear picture of what is important for students to be able to do, then organizing the curriculum, delivery and assessment to make sure learning happens”
Figure 1: OBE Framework (based on Spady, 1994:58)

- It is needs-driven
- Outcomes-driven
- With a design-down approach
- Specifies outcomes and levels of outcomes
- Focus shifts from Teaching to Learning
- It is holistic
Table 1: Difference between Traditional Education and OBE

<table>
<thead>
<tr>
<th>Traditional Education</th>
<th>OBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher-centered</td>
<td>Learner-centered</td>
</tr>
<tr>
<td>Rote learning</td>
<td>Creativity/ promoting critical thinking</td>
</tr>
<tr>
<td>Scoring good grades at the end of semester as an outcome</td>
<td>Employable graduates as an outcome</td>
</tr>
<tr>
<td>Tutor as facilitator</td>
<td>Independent learners for acquisition of knowledge & problem solving</td>
</tr>
<tr>
<td>Individual task</td>
<td>Collaborative/team learning</td>
</tr>
<tr>
<td>Completion of syllabi</td>
<td>Skill development as per industrial requirement</td>
</tr>
</tbody>
</table>
WHEN TO IMPLEMENT OBE?

- AT THE TIME OF CURRICULUM MAPPING
- WHILE WRITING LEARNING OUTCOMES
- ASSESSMENT DESIGNING
1. **CURRICULUM MAPPING**

- the process by which you **determine where, when, and how learning outcomes are taught** and assessed within a degree program
- demonstrates in which courses learning outcomes are **taught and assessed** in the curriculum
2. WRITING LEARNING OUTCOMES

Learning Outcome (KSA)

Benefits
- Shared expectations from students and teachers
- Valid source to set learning goals
- Clear directions for teachers/educators

Example (Chemistry)
- Students will develop an appreciation for the application of organic synthesis to the solution of modern day Technological & Social Challenges

Levels of Learning
BLOOM’S TAXONOMY
“Learning outcomes are broad yet direct statements that describe the knowledge, skills and attitudes that students should reliably demonstrate as a result of undertaking an educational experience. They can be articulated at several levels, including lesson, course, program, degree, etc.”
Students ask 3 questions

- Do What (Verb) ?
- With What (Content)?
- For What (What will you assess)?
3. DESIGNING ASSESSMENTS

- Design Down

 1. What will students learn? (learning outcomes)
 2. How will outcomes be measured? (appropriate assessments)
 3. What will students do to achieve these outcomes? (appropriate learning activities to develop the required knowledge, skills or attitudes)

- Bloom’s Taxonomy requires a scale of level of expertise to achieve student outcomes, thus help in designing appropriate assessment and classroom techniques and to measure the goals.
Bloom’s Taxonomy – Action Verbs

<table>
<thead>
<tr>
<th>Bloom’s levels</th>
<th>1 Knowledge</th>
<th>2 Comprehension</th>
<th>3 Application</th>
<th>4 Analysis</th>
<th>5 Synthesis</th>
<th>6 Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloom’s Definition</td>
<td>Remember previously learned information</td>
<td>Demonstrate an understanding of the facts</td>
<td>Apply knowledge to actual situations</td>
<td>Break down objects or ideas into simpler parts and find evidence to support generalizations</td>
<td>Compile component into a new whole or propose alternative solutions</td>
<td>Make and defend judgments based on internal evidence or external criteria</td>
</tr>
<tr>
<td>Verbs</td>
<td>arrange</td>
<td>classify</td>
<td>apply</td>
<td>analyze</td>
<td>arrange</td>
<td>Appraise</td>
</tr>
<tr>
<td></td>
<td>define</td>
<td>convert</td>
<td>change</td>
<td>appraise</td>
<td>assemble</td>
<td>argue</td>
</tr>
<tr>
<td></td>
<td>describe</td>
<td>defend</td>
<td>choose</td>
<td>break down</td>
<td>categorize</td>
<td>Assess</td>
</tr>
<tr>
<td></td>
<td>describe</td>
<td>compute</td>
<td></td>
<td>calculate</td>
<td></td>
<td>attach</td>
</tr>
</tbody>
</table>
In 2005, (NASSCOM) and McKinsey, reported that 25% of engineering graduates are not employable by Multinational companies and this is due to the problematic Indian educational system.

Survey Collaboratively by Government of India, World Bank and Federation of Indian Chambers of Commerce & Industry (FICCI) in 2009 has shown that 64% employers are dissatisfied with the graduates’ skills.

Employers also reported graduates lacking skills of higher order/critical thinking, problem solving, conducting experiments, creativity and application of modern tools.
The report raised many critical issues that hamper imparting quality education. Few of them are as stated below:

- engineering education seems to be boring to many students
- reputed to be difficult
- no proper use of ICT & inquiry-based learning
- engineering graduates should have multidisciplinary knowledge and work experience
- inefficient role of accrediting authorities in addressing desirable graduate attributes in engineering graduates etc...
On the backdrop of these surveys...

- MHRD have changed the criteria for accreditation to become outcome-based (Shinde & Inamdar, 2013) to make our technical & engineering graduates ready for global employment
Graduate Attributes for undergraduate engineering programs for international recognition are;

- Engineering knowledge
- Problem analysis
- Design and development of solutions
- Investigation of complex problem
- Modern tool usage
- Engineer & society
- Environment & sustainability
- Ethics
- Individual & team work
- Communication
- Lifelong learning and
- Project management & finance

(NBA, 2013)
An example of implementation of OBE from the Electrical Engg. Discipline will be shown down here by Dr. Nidhika Birla
References

• Faculty of Arts and Science, January 2014, Queen’s University

• Malan, 2000.

• NBA, 2013. “Outcome Based Accreditation”.
 [Retrieved online]

 http://dx.doi.org/10.4236/jss.2014.210002
TIME TO REFLECT BACK...

KEY CONCEPTS

- Learning Outcome
- What are graduate attributes (MBA)
- Bloom’s Taxonomy
- Design down in OBE
NEXT WEBINAR (12 July 2017) ...

DR. NIDHIKA BIRLA
(Asso. Prof., Electrical)

On

MATLAB based Methodology
for
Teaching Technical Subjects
Outline

Section -2 : by DR. NIDHIKA BIRLA

• Characteristics of 21st Century Teacher & Engineering Education
• Role of Modern Tools in Learning Electrical Engineering
• Examples from Subjects: “Control Systems” & Subject “Electrical Measurements and Measuring Instruments”
• Effect of using Modern Tools & Mapping them to Graduate Learning Attributes