KURUKSHETRA UNIVERSITYKURUKSHETRA Bachelor of Technology (ElectricalEngineering) Scheme of Studies/Examination SemesterVII (w.e.f.session 2021-22)

SN	Course	Subject	L:T:P	H/Wk	Credits		Examination	Schedule	(Marks)	Duration
	NO.					Major Test	Minor Test	Practi cal	Total	of Exam (Hrs)
1	HSMC-401A	Principles of Management	3:0:0	3	3	75	25	0	100	3
2		Program Elective-IV	3:0:0	3	3	75	25	0	100	3
3		Program Elective-V	3:0:0	3	3	75	25	0	100	3
4		Open Elective-III	3:0:0	3	3	75	25	0	100	3
		Open Elective-IV	3:0:0	3	3	75	25	0	100	3
5	EE-401LA	Project Stage-I	0:0:6	6	3	-	40	60	100	3
6	#EE-403A	Industrial Training-II	2:0:0	2	-	-	100	-	100	3
		Total		23	18	375	165	60	600	
			-	•						•

**Program Elective-IV	EEP-405A	HVDC Transmission System
	**EENP-401A	Industrial Electrical System
**Program Elective- V	**EENP-403A	Digital Control System
	**EENP-405A	High Voltage Engineering
**Open Elective-III	EEO-401A	Utilization of Electric Energy
-	EEO-415A	Transducers and their Applications
**Open Elective-IV	EEO-419A	Biomedical Instrumentation
	EEO-421A	Fluid Machinery

Note: The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

EE-403A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify.

**: Subject common with B.Tech. Electrical& Electronics Engg .7th Sem.

KURUKSHETRA UNIVERSITY KURUKSHETRA BachelorofTechnology (Electrical Engineering) Scheme of Studies/Examination Semester VIII (w.e.f.Session 2021-22)

S. No.	Course No.	Subject	L:T:P	Hou Cro rs/ dit		E	Durat ion			
				We ek		Major Test	Minor Test	Practic al	Tot al	of Exa m. (Hrs.)
1		Program Elective-VI	3:0:0	3	3	75	25	0	100	3
3		Open Elective-V	3:0:0	3	3	75	25	0	100	3
4		Open Elective-VI	3:0:0	3	3	75	25	0	100	3
5	EE-402LA	Project Stage-II	0:0:12	12	6	-	40	60	100	3
		Total		21	15	225	115	60	400	

Program Elective-VI	EEP-402A	Electrical & Hybrid Vehicles
	**EENP-402A	Power Quality & FACTS
	**EENP-404A	Control System Design
	EEP-408A	Wind and Solar Energy System
Open Elective-V	EEO-410A	Power Plant Engineering
	EEO-412A	PLC and their application
Open Elective-VI	**EENO-406A	Embedded System
	**EENO-412A	Automobile Engineering
	EEO-418A	Biomedical Signal & Image Processing

Note: The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

**Subject common with B.Tech. 8th sem Electrical & Electronics Engg.

Total Credits = 160

HSMC-401A	Principles of Management									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program Objective	To make students aware about the fundamentals and various technique used in signal and									
(PO)										
Course Outcomes (CO)										
After complet	ion of course	students will	be able to							
CO1	To develop a	ability to critica	ally analyze a	and evaluate	a variety of n	nanagement	practices in			
	the contempo	orary context								
CO2	To understar	nd and apply a	variety of ma	inagement an	d organizatio	nal theories i	n practice			
CO3	To develop a the contempo	ability to critica orary context	ally analyze a	and evaluate	a variety of n	nanagement	practices in			
CO4	To be able to competencie	to mirror exist s, requirec	ing practices for to	or to genera day's con	te their own nplex and	innovative r global	nanagement workplace			

UNIT-1

Introduction: Definition, roles and functions of a manager, management and its science and art perspectives, management challenges and the concepts like, competitive advantage, entrepreneurship and innovation. Early contributors and their contributions to the field of management. Corporate Social Responsibility. Planning, Organizing, Staffing and HRD functions, Leading and Controlling. Decision making under certainty, uncertainty and risk, creative process and innovation involved in decision making.

UNIT-2

Early Contributions and Ethics in Management: Scientific Management- contributions of Taylor, Gilbreths, Human Relations approach-contributions of Mayo, McGregor's Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the Contingency Approach, the Mckinsey 7-S Framework Corporate Social responsibility- Managerial Ethics. (3 Hrs)

UNIT-3

Organizing for decision making: Nature of organizing, organization levels and span of control in management Organizational design structure -departmentation. line and and staff concepts (3 Hrs.) Limitations of decision making Evaluation and selecting from alternatives- programmed non-programmed decision and decisions under certainty, uncertainty and risk-creative process and innovation (3 Hrs.)

UNIT-4

Staffing and related HRD Functions: definition, Empowerment, staff – delegation, decentralization and recentralization of authority – Effective Organizing and culture-responsive organizations –Global and entrepreneurial organizing (3 Hrs.) Manager inventory chart-matching person with the job-system approach to selection (3 Hrs.) Job design skills and personal characteristics needed in managers selection process, techniques and Instruments (3 Hrs.)

Text Books

- 1. Harold Koontz and Heinz Weihrich, *Essentials of Management*, Mc Graw Hil Companies , 10th edition, 2014
- 2. Draft, New Era Managment, Pearson Education, 11th edition, Cengage Learning
- 3. Ptere F. Drucker, *The Practice of Management*, Mc Graw Hill, New York.
- 4. Robbins and Coulter, Management, 13th Edition, Pearson Education, 2016.

EEP-405A		HVDC Transmission Systems										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)					
				Test	Test							
3	0	0	3	75	25	100	3					
Program	To make stud	To make students aware about the fundamentals and various techniques of HVDC transmission										
Objective	system	system										
(PO)												
		C	ourse Outco	mes (CO)								
After complet	ion of course	students will	be able to									
CO1	Understand	the advantage	s of dc transn	nission over a	c transmissio	n.						
CO2	Understand	the operation of	of Line Comm	utated Conve	rters and Volt	tage Source						
CO3	Understand	the control stra	ategies used i	n HVDC trans	smission syste	em						
CO4	Understand	the improveme	ent of power s	ystem stabilit	y using an H∖	/DC system						

Comparison of AC and dc Transmission (Economics, Technical Performance and Reliability). Application of DC Transmission. Description of DC transmission system; planning for HVDC transmission; modern trends in DC transmission.

UNIT 2

Thyristor Valve & Analysis of HVDC Converters: Introduction; thryistor device; thyristor value; value tests; recent trends; pulse number; choice of converter configuration; simplified analysis of Graetz circuit; converter bridge characteristics; characteristics of twelve pulse converter; detailed analysis of converters.

UNIT 3

Converter and Hvdc System Control: General; principles of DC link control; converter control characteristics; system control hierarchy; firing angle control; current and extinction angle control; starting and stopping of dc link; power control; higher level controllers; telecommunication requirements.

UNIT 4

Smoothing Reactors, Reactive Power Sources and Filters in LCC HVdc systems DC line: Corona Effects. Insulators, Transient Over-voltages. dc line faults in LCC systems. dc line faults in VSC systems. dc breakers. Monopolar Operation. Ground Electrodes.

Suggested Books:

- 1. Padiyar, K.R., "HVDC Power Transmissions Systems", New Age International, 2001
- 2. Rao, S., "EHV-AC, HVDC Transmission & Distribution Engineering", Khanna Publishers, 1999
- 3. Tagare, D.M., "Reactive Power Management", Tata McGraw Hill, 1996
- 4. Dubey, G.K., "Power Semi-conductor Controlled Drives", Prentice Hall, 1999.
- 5. Arrillaga, J., "High Voltage D.C.Transmission", Peter Peregrinus Ltd, 1996

EENP-401A		Industrial Electrical System										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)					
3	0	0	3	75	25	100	3					
Program Objective (PO)	To provide knowledge about various concepts of industrial electrical systems and their automation											
			Course O	utcomes (CC))							
After completio	n of cours	e students wi	ll be able to									
CO1	Understar	nd residential a	and commerc	ial electrical s	ystems							
CO2	Understar and comn	nd various typ nercial premise	es of illumina es	ation systems	and lighting	schemes us	sed for a residential					
CO3	Understar	nd various con	cepts of indu	strial electrica	l systems							
CO4	Understar	nd the concept	related to in	dustrial electr	ical system a	utomation						

UNIT- I

Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components

UNIT- II

Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting

UNIT- III

Industrial Electrical Systems I : HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

UNIT IV

Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks

Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation

Text Books/References:

1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.

2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.

3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. Web site for IS Standards.

4. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008

EENP-403A	Digital Control System										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time(Hrs)				
3	0	0	3	75	25	100	3				
Program Objective (PO)	To enable	To enable students to design and analyze discrete time (digital) control system									
			Course O	utcomes (CO	D)						
After complet	tion of cours	e students wi	ill be able to								
C01	Represent discrete time systems under the form of z-domain transfer functions and state-space models. Also able to obtain the model of discrete-time systems by pulse transfer function										
CO2	Analvze sta	bility, transient i	response and s	steadv state be	ehaviour of line	ear discrete tim	e systems.				

	analytically and numerically using tools such as MATLAB and Simulink
CO3	Design sampled data control systems.
CO4	Describe Discrete state space model and test controllability and observability of systems

UNIT-I

1

Introduction to digital control: Introduction, Discrete time system representation, Mathematical modelling of sampling process, Data reconstruction.

Modelling discrete-time systems by pulse transfer function

Revisiting Z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse transfer function of closed loop system, Sampled signal flow graph

UNIT- II

Stability analysis of discrete time systems: Jury stability test, Stability analysis using bi-linear transformation, Time response of discrete systems, Transient and steady state responses, Time response parameters of a prototype second order system.

UNIT- III

Design of sampled data control systems: Root locus method, Controller design using root locus, Root locusbased controller design using MATLAB, Nyquist stability criteria, bode plot, Lead compensator design using Bode plot, Lag compensator design using Bode plot, Lag-lead compensator design in frequency domain.

UNIT IV

Discrete state space model: Introduction to state variable model, Various canonical forms, Characteristic equation, state transition matrix, Solution to discrete state equation. Controllability, observability and stability of discrete state space models: Controllability and observability, Stability, Lyapunov stability theorem.

Text Books/References:

- 1. B. C.Kuo, Digital Control Systems, Oxford University Press, 2nd Edition, Indian Edition, 2007.
- 2. K. Ogata, Discrete Time Control Systems, Prentice Hall, 2ne Edition, 1995.
- 3. M. Gopal, Digital Control and State Variable Methods, McGraw Hill, 2/e, 2003.
- 4. G. F. Franklin, J. D.Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison Wesley, 1998, Pearson Education, 3rd Edition.
- 5. K. J.Astroms and B. Wittenmark, Computer Controlled Systems Theory and Design, Prentice Hall, 3rd Edition, 1997.

EENP-405A	High Voltage Engineering										
Lecture	Tutorial	Tutorial Practical		Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To enable	To enable students to understand important concepts of high voltage engineering									
Objective (PO)	Objective (PO)										
Course Outcomes (CO)											
After completion	of course s	tudents will I	be able to								
CO1	Understan	d the concept	of electrostat	tic field and	effect of high	electrostatio	; field over				
	Gases, Lic	uid and solid	dielectric								
CO2	Understan	d the concept	of generatior	n of high volta	ages and cur	rents in the s	system				
CO3	Measure h	Measure high voltages and currents in the system									
CO4	Perform N	on-destructive	and high vol	tage testing	on various co	omponents o	f power system				

UNIT I

Electrostatic Field and Field Stress Control: Electric field stresses, Numerical methods for Electric field computation, Finite Element Method, Charge simulation method.

Conduction and Break Down in Gases: Ionization processes, Townsend's criterion, breakdown in electronegative gases, time lags for breakdown, streamer theory, Paschen's law, break down in non-uniform field, and corona discharge

Break Down in Liquid Dielectrics: Conduction and breakdown in pure liquid and commercial liquid.

Break Down in Solid Dielectrics: Intrinsic breakdown, electromechanical breakdown of solid, dielectric and composite dielectrics.

UNIT II

Generation of High Voltages and Currents: Generation of high direct current voltages, generation of high alternating voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT III

Measurement of High Voltages and Currents: Measurement of high direct current voltages, measurement of high alternating and impulse Voltages measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements.

Insulation Coordination in Electric Power Systems: Principle of Isolation Coordination in High-Voltage & Extra-High Voltage Power System.

UNIT IV

Non-Destructive Testing: Measurement of direct current resistively, measurement of dielectric constant and loss factor, partial discharge measurements

High Voltage Testing: Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables,

testing of transformers, testing of surge arresters, radio interference measurements.

Text Books/References:

1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill.

- 2. C. L. Wadhwa, "High Voltage Engineering", Wiley Eastern Ltd.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia, "High Voltage Engineering", Khanna Publishers
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons

6. M. Khalifa,' High Voltage Engineering Theory and Practice,' Marcel Dekker.

7. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India

EEO-401A	UTILAZTION OF ELECTRICAL ENERGY										
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To make stud	To make students aware about the fundamentals and various techniques used in Utiization of									
Objective	Electrical Energy										
(PO)											
		C	ourse Outco	mes (CO)							
After complet	ion of course	students will	be able to								
CO1	Understand f	he different te	rms of illumin	ation and vari	ious lamps						
CO2	Analyze the	different metho	ods of Electric	al heating an	d electrical w	elding					
CO3	Understand the laws of Electrolysis.										
CO4	Understand f	the basics of tr	action motors	S.							

Illumination: Term used in illumination, Laws of illumination, sources of Light, arc lamp incandescent lamp, discharge lamp, sodium vapour, mercury vapour lamp, fluorescent tubes, lightening schemes, method of lightning calculation.

UNIT II

Electrical Heating: Advantages of Electrical Heating, various types of Electrical heating, Power frequency and High frequency heating, Degree of heating element, Equivalent circuit of arc furnace, Resistance heating, Arc heating, Induction heating, dielectric heating etc.

Electric Welding: All types of electrical welding, resistance welding, arc welding, electrical winding equipment, Comparison between AC & DC welding, types of electrodes, advantages of coated electrodes.

UNIT III

Electroplating: Basic principle, faraday's law of electrostatics, terms used, Application of electrolysis, factors governing electro deposition, power supply.

Refrigeration & Air Conditioning: Basic principle, various compression cycle & system its application, electric circuit of refrigerator, air conditioner.

UNIT IV

Traction Motors: Different system of electric traction, comparison between AC & DC system, block diagram of traction system ,Starting-Speed control and braking- Speed control and braking –Speed time curves,-Mechanics of Train movement-Tractive effort for acceleration – Power and energy output from driving axles -Specific energy output and consumption-Train resistance.

Suggested Books:

1. Dr.S.L.Uppal, Electrical Power ,Khanna Publishers, New Delhi,1980.

2. M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, A Text Book On Power System Engineering, Dhanpat Rai & Co, New Delhi 1997-98

3. H.Pratap, Art and Science of Utilization of Electric Energy, Dhanpat Rai & Sons, New Delhi, 1980.

5. G.C.Garg, Utilization of Electric Power and Electric Traction, Khanna publishers, New Delhi, 1995.

EEO-415A	Transducer &	Transducer & Their Applications											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)						
				Test	Test								
3	0	0	3	75	25	100	3						
Program	To make stud	To make students aware about the fundamentals of transducers and their applications.											
Objective													
(PO)													
		C	ourse Outco	mes (CO)									
After complet	ion of course	students will	be able to										
CO1	Understand	the different ty	pes of transd	ucers									
CO2	Analyze the	different metho	ods of measu	irements of d	isplacement								
CO3	Understand	the different m	ethods of me	asurements c	f pressure								
CO4	Understand	the basics con	cepts of meas	surements of	temperature								

UNIT - I

Definition of transducer. Advantages of an electrical signal as out-put. Basic requirements of transducers, Primary and Secondary Transducer, Analog or digital types of transducers. Resistive, inductive, capacitive, piezoelectric, photoelectric and Hall effect transducers.

UNIT-II

Measurement of Displacement - Potentiometric resistance type transducers, inductive type transducers, differential transformer (L.V.D.T), capacitive transducers, Hall effect devices, strain gage transducers. Measurement of Velocity - variable reluctance pick up, electromagnetic tachometers, photoelectric tachometer, toothed rotor tachometer generator.

Measurement of Flow: Venturi meter, orifice meter, nozzle meter, Pitot-static tube, rotameter, turbine flow meter, ultrasonic flow meter, electromagnetic flow meter, hot wire anemometer.

UNIT - III

Measurement of Pressure - Manometers, Force summing devices and electrical transducers Measurement of Force - Strain-gage load cells, pneumatic load cell, L VDT type force transducer.

Measurement of Torque - Torque meter, torsion meter, absorption dynamometers, inductive torque transducer, digital methods

UNIT - IV

Measurement of Temperature - Metallic resistance thermometers, semi conductor resistance sensors (Thermistors), thermo-electric sensors, pyrometers.

Measurement of Liquid Level: Resistive Method, Inductive method, capacitive method Sound Measurement: Microphone, Types of Microphones.

Measurement of Humidity: Resistive, capacitive, aluminium oxide & crystal hygrometers.

Suggested Books:

- 1. B.C. Nakra, K.K. Chaudhry, "Instrumentation Measurement and Analysis," . Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Thomas G. Beckwith etc. all, "Mechanical Measurements (International Student Edition), Addison-Wesley Longman, Inc. England.
- 3. A.K. Sawhney, " A Course in Electrical and Electronic Measurements and Instrumentation," Dhanpat Rai & Sons, Delhi-6.

EEO-419A	BIOMEDICAL	BIOMEDICAL INSTRUMENTATION									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To make stud	To make students aware about the fundamentals and various technique used in biomedical									
Objective	instrumentation	instrumentation.									
(PO)											
		C	ourse Outco	mes (CO)							
After complet	ion of course	students will	be able to								
CO1	Understand	the basic conc	epts of bio po	tential.							
CO2	Analyze the	different types	of meters.								
CO3	Understand	Understand the different medical imaging technique.									
CO4	Understand	the basics con	cepts of Elect	rode-electrol	te interface						

Unit 1

Cell resting potential and action potentials - Origin of bio potentials - characteristics – Frequency and amplitude ranges - ECG – Einthoven's triangle – 3 lead ECG system - EEG – 10- 20 electrode system - Origin and characteristics of EMG – EOG - ERG electrodes and transducers.

Unit 2

Diagnostic and Therapeutic Equipments: Blood pressure monitors – Electro-cardio scope - Pulse Oximeter - pH meter - Auto analyzer – Pacemakers – Defibrillator - Heart lung machine - Nerve and muscle stimulators - Dialysis machines - Surgical diathermy equipments – Nebulizer; inhalator - Aspirator – Humidifier - Ventilator and spirometry.

Unit 3

Medical imaging techniques: Basics of diagnostic radiology – Production - Nature and properties of X rays - X-ray machine - Block diagram - Digital radiography – CT - Basic Principle - Block diagram – Radioisotopes in medical diagnosis – Physics of radioactivity – Gamma Camera. Block diagram – SPECT Scanner – PET Scanner - Principles of NMR Imaging systems - Block diagram of NMR Imaging System .

Unit 4

Electrode-electrolyte interface – Electrode – skin interface - Half cell potential – Impedance - Polarization effects of electrode – Non-polarizable electrodes. Types of electrodes - Surface; needle and micro electrodes – ECG – EMG - EEG Electrodes. Physics of Ultrasound waves – Doppler effect – Medical Ultrasound Electrical safety: Physiological effects of electricity.

TEXT BOOKS:-

- 1. John G Webster, "Medical Instrumentation Application and Design", 4th ed., John Wiley and Sons, 2007.
- 2. Leslie Cromwell, Fred. J. Weibell, Erich. A. Pfeiffer, "Biomedical Instrumentation & Measurements, 2nd ed., Pearson Education., 2001.
- 3. R S Khandpur, "Handbook of Biomedical Instrumentation", 1st ed., Tata McGraw Hill Publishing Company Limited, 2004.

EEO-421A	Fluid Machin	ery						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)	
				Test	Test		. ,	
3	0	0	3	75	25	100	3	
Program Objective (PO)	To make students aware about the fundamentals and various pumps and machinery used in hydraulic system.							
		C	ourse Outco	mes (CO)				
After complet	ion of course	students will	be able to					
CO1	Discuss the	characteristics	of centrifuga	I pump and re	eciprocating p	umps.		
CO2	Calculate for	ces and work	done by a jet	on fixed or m	oving plate ar	nd curved pla	ates.	
CO3	Know the wo	orking of turbin	es and select	the type of tu	urbine for an a	pplication		
CO4	Do the anal	ysis of air com	pressors and	select the su	itable one for	a specific ap	oplication	

UNIT-1

Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve), – Series of vanes - work done and efficiency Hydraulic Turbines : Impulse and Reaction Turbines – Degree of reaction – Pelton Wheel – Constructional features - Velocity triangles – Euler's equation – Speed ratio, jet ratio and work done , losses and efficiencies, design of Pelton wheel – Inward and outward flow reaction turbines- Francis Turbine – Constructional features – Velocity triangles, work done and efficiencies.

UNIT-2

Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , Type Number– Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power.

UNIT-3

Rotary motion of liquids – free, forced and spiral vortex flows Rotodynamic pumps- centrifugal pump impeller types,-velocity triangles-manometric head- work, efficiency and losses, H-Q characteristic, typical flow system characteristics, operating point of a pump. Cavitation in centrifugal pumps- NPSH required and availableType number-Pumps in series and parallel operations.

UNIT-4

Positive displacement pumps- reciprocating pump – Single acting and double acting- slip, negative slip and work required and efficiencyindicator diagram- acceleration head - effect of acceleration and friction on indicator diagram – speed calculation- Air vessels and their purposes, saving in work done to air vessels multi cylinder pumps.

Text Books: 1. Som, Introduction to Fluid Mechanics and Fluid Machines ,McGraw Hill Education India 2011

- 2. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2005.
- 3. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013
- 4. Yahya S. M, Fans, Blower and Compressor, Tata McGraw Hill, 2005.

EEP-402A			Electrica	& Hybrid V	/ehicles					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To provide kn	To provide knowledge of Electrical and hybrid vehicles to the students.								
Objective										
(PO)										
		C	ourse Outco	mes (CO)						
After complet	ion of course	students will	be able to							
CO1	To learn abo	out Electrical a	nd Hybrid Vel	hicles.						
CO2	Understand a	about types of	machinery us	ed in Electric	propulsion u	nit				
CO3	Understand a	about various i	methods of er	nergy storage	in Electric an	d hybrid vel	nicles			
CO4	Learn about	sizing method	lology of drive	e system and	l energy man	agement str	ategies used			

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles.

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT 2

Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT 3

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.

UNIT 4

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Text / Reference Books:

1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

3. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

EENP-402A			Power C	Quality and F	ACTS					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To enable st	To enable students to understand the Power Quality related issues, their solutions and								
Objective	details of FA	CTS devices.								
(PO)										
Course Outcomes (CO)										
After comple	etion of cours	se students w	ill be able to							
CO1	Understand	the characteris	tics of ac trar	smission and	the effect of	shunt and se	eries			
	reactive com	pensation.								
CO2	Understand	the working pri	inciples of FA	CTS devices	and their ope	rating				
	Characteristi	ics.								
CO3	Understand th	ne basic concep	ts of power qua	ality.						
CO4	Understand th	ne working princ	iples of device	s to improve po	ower quality.					

Power Quality Problems & Monitoring: Overview and Definitions of power quality, sources of pollution, international power quality standards, and regulations.

UNIT 2

Power Quality Problems : Surges, voltage sag and swell, over voltage under voltage, outage voltage, and phase angle imbalance, electric noise, harmonics, frequency deviation monitoring,

UNIT 3

Power System Harmonics: Harmonic analysis, harmonic sources – the static converters, transformer magnetization and non-linear machines, are furnaces, fluorescent lighting. Harmonic effect within the power system, interference with communication harmonic measurements, Harmonic Mitigation Techniques

UNIT 4

FACT Systems: Introduction – Terms & definition, Fact Controllers, Type of FACT devices i.e. SSC, SVC, TSC, SSS, TCSC, UPFC, Basic relationship for power flow control.

Introduction to Custom Power Devices-Network Reconfiguration devices; Load compensation and voltage regulation using DSTATCOM; protecting sensitive loads using DVR; Unified power Quality Conditioner. (UPQC), uninterruptible power suppliers

Text/References

1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press, 1999.

2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.

3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.

4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.

EENP-404A			Contro	I System D	esign				
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)		
				Test	Test				
3	0	0	3	75	25	100	3		
Program	The course is useful for the students to get an idea of ideal practices in the field of control								
Objective	systems design. Students will get in touch with recent trends in the field of modern control								
(PO)	engineering. Here importance of designing the control systems is emphasized.								
		(Course Outco	omes (CO)					
After comple	etion of cours	e students w	ill be able to						
CO1	Define fundan	nental control s	/stem design s	pecifications a	nd basic princi	ples of contro	ler design		
CO2	Design mode	rn controllers ba	ased on the sta	ate space tech	nniques and re	ecognize the i	mportance of		
	observability and controllability for system design.								
CO3	Understand co	oncept of optimation	al control and r	obust control t	echniques.				
CO4	Understand of	concept of Lya	ounov's stabili	ty Criteria an	d optimal con	trol			

Design of Feedback Control Systems : Introduction, Approaches to System Design, Cascade Compensation Networks, Phase-Lead Design Using the Bode Diagram, Phase-Lead Design Using the Root Locus, System Design Using Integration Networks, Phase-Lag Design Using the Root Locus, Phase-Lag Design Using the Bode Diagram, Design on the Bode Diagram Using Analytical Methods, Systems with a Pre-filter, Design for Deadbeat Response; Design Examples.

UNIT 2

Design of State Variable Feedback Systems: Introduction, State space representation of physical systems, State space models of some common systems like R-L-C networks, DC motor, inverted pendulum etc., Controllable Canonical Form, Observable Canonical Form, Diagonal Canonical Form, State transition matrix, Solution of state equations, Controllability and Observability, Full-State Feedback Control Design; Observer Design; Integrated Full-State Feedback and Observer; Tracking Reference Inputs; Internal Model Design; Design Examples

UNIT 3

Introduction to Robust Control and optimal control : Robust control system and system sensitivities to parameter perturbations, analysis of robustness, systems with uncertain parameters, considerations in design of robust control system, robust PID controller.

UNIT 4

Lyapunov's stability and optimal control: Positive/negative definite, positive/negative semi-definite functions, Lyapunav stability criteria, introduction to optimal control, Riccatti Equation, Linear Quadratic Regulator, Design Examples.

Text books / References:

- 1. Modern Control Engineering by K. Ogata, PHI.
- 2. Discrete Time Control Systems by K. Ogata, PHI.
- 3. Automatic Control Systems by B C Kuo, PHI.
- 4. Control Systems, Principles and Design by M. Gopal, MC Graw Hill, 2012.

EEP-408A		Wind and Solar Energy									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	The main c	bjective of the	course is to i	mpart the stu	dents with the	e detailed kn	owledge of				
Objective	working of	working of solar and wind power plants.									
(PO)											
		(Course Outco	omes (CO)							
After complet	ion of cours	e students w	ill be able to								
CO1	Understand	d the current e	nergy scenari	o across the	country and the	he world .Stu	udents will				
	also be abl	e to get knowl	edge about va	arious types c	of energy reso	urces availa	ble.				
CO2	Get knowle	dge about var	ious types of	Solar energy	systems.						
CO3	Understand	the concepts	related to wir	nd energy ger	neration.						
CO4	Design hyb	rid energy sys	tems.								

Introduction: Energy demand of world and country and gap analysis, Fossil fuel based systems, Impact of fossil fuel based systems, Non conventional energy – seasonal variations and availability, Renewable energy – sources and features, Hybrid energy systems. Distributed energy systems and dispersed generation (DG).

UNIT 2

Solar thermal systems: Solar radiation spectrum, Radiation measurement, Technologies, Applications, Heating, Cooling, Drying, Distillation, Power generation; Costing: Life cycle costing (LCC), Solar thermal system.

Solar Photovoltaic systems : Operating principle, Photovoltaic cell concepts ,Cell, module, array, Series and parallel connections, Maximum power point tracking, Applications ,Battery charging, Pumping , Lighting,Peltier cooling , Costing: Life cycle costing ,Solar PV system

UNIT 3

Wind Energy: Wind power and its sources, Wind patterns and wind data, Site selection, criterion, momentum theory, Types of wind mills, Characteristics of wind generators, performance and limitations of energy conversion systems, Load matching, Life cycle costing - Wind system LCC

UNIT4

Hybrid Energy Systems: Need for Hybrid Systems, Range and type of Hybrid systems, Case studies of Diesel-PV, Wind-PV, Microhydel-PV, electric and hybrid electric vehicles.

Text Books / References:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi
- 2. Mittal K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi
- 3. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi
- 4. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi

EEO-410A			Power	Plant Engine	ering					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program	To enable st	To enable students to understand the power plant engineering.								
Objective										
(PO)										
Course Outcomes (CO)										
After comple	etion of cours	se students w	ill be able to							
CO1	To provide an	overview of po	wer plants and	the associated	b					
CO2	Understand th	ne energy conve	ersion issues							
CO3	Understand th	ne principles of o	operation for di	fferent power	olants					
CO4	Understand th	ne principles pov	ver plant econo	omics.						
Unit-1										

Coal based thermal power plants, basic Rankine cycle and its modifications, layout of modern coal power plant, super critical boilers, FBC boilers, turbines, condensers, steam and heating rates, subsystems of thermal power plants, fuel and ash handling, draught system, feed water treatment.

Unit-2

Gas turbine and combined cycle power plants, Brayton cycle analysis and optimization, components of gas turbine power plants, combined cycle power plants.

Unit-3

Basics of nuclear energy conversion, Layout and subsystems of nuclear power plants, Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Reactor, Pressurized Heavy Water Reactor (PHWR), Fast Breeder Reactors (FBR), gas cooled and liquid metal cooled reactors, safety measures for nuclear power plants.

Unit-4

Hydroelectric power plants, classification, typical layout and components, principles of wind, tidal, solar PV and solar thermal, geothermal, biogas and fuel cell power systems.

Text Books:

1. Nag P.K., Power Plant Engineering, 3rd ed., Tata McGraw Hill, 2008.

2. El Wakil M.M., Power Plant Technology, Tata McGraw Hill, 2010.

3. Elliot T.C., Chen K and Swane kamp R.C., Power Plant Engineering, 2nd ed., McGraw Hill, 1998.

EEO-412A			PLC and	d Their Appli	cation						
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To enable st	To enable students to understand the power plant engineering.									
Objective											
(PO)											
		(Course Outco	omes (CO)							
After comple	etion of cours	se students w	ill be able to								
CO1	Understand th	ne Programmab	le Logic Contro	ollers							
CO2	Explore the ba	asic functions of	PLC Program	ming							
CO3	Recognize the	Recognize the intermediate functions of PLC									
CO4	Identify the va	arious advanced	functions in P	C Programmin	g						

Paper Setter Note: 8questions of 15 marks each distributed in four sections are to be set taking two from each unit. The candidate is required to attempt five questions in all, taking at least one from each of the four sections

UNIT 1

Introduction to PLC:- Definition: Evolution, Advantages/Disadvantages: system description; Internal operation of CPU and I/C modules, installation & testing.

Programs & Software:- General programming procedures, registers and Addresses, Relation of Digital Gate Logic to contact logic.

UNIT 2

Basic PC Functions:-Programming, On-Off inputs to produce on – off outputs: Timers, Counters: Auxiliary Commands &functions.

UNIT 3

Intermediate Functions:- Arithmetic functions, Number Comparison functions, The skip & master control relay functions, Data move systems.

Functions involving individual register bits:- Utilizing digital bits, the sequences functions, Matrix functions. UNIT 4

Advanced Functions:- Controlling a robot with a PC; Analog PC operator , Immediate update, select continuously, ascending sort, transmit print, FIFO, LIFO,& Loop Control.

Suggested Books:

- 1. Webb: Programmable Controllers: Principles & Applications, Merril Publishing Co.Columbus, Ohio, 1988.
- 2. Simpson: Programmable Logic Controllers, Prentice Hall, Englewood Cliffs, 1994.
- 3. T.A.Hughes, Programmable Controllers, 3rd Edition, ISA Press.
- 4. Gary Danning, Introduction to Programmable Logic Controllers, Delmar Thomson Learning
- 5. Bela.G.Liptak, Instrument Engineer's Handbook, Vol:II-Process Control, 3rd Edition, ISA Press, 1995

EENO-406A		Embedded System									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)				
				Test	Test						
3	0	0	3	75	25	100	3				
Program	To introduc	e the student	s to concepts	s of embedde	ed systems.	To offer ther	n a level of				
Objective	confidence	confidence in microcontroller based system design. To introduce them to the concepts of									
(PO)	ARM architectures and RTOS.										
Course Outcomes (CO)											
After complet	ion of cours	e students w	ill be able to								
CO1	Understand	various conce	epts of embed	lded system							
CO2	Learn abour	t 8051 Microco	ontroller								
CO3	Understand	the operating	g system of	Embedded s	ystem and	also learn a	bout higher				
	embedded	system									
CO4	Learn abo	out communic	ation basics	and interf	acing of va	arious devid	es to the				

Introduction to embedded system: Embedded System, Embedded versus external memory devices, CISC and RISC processors, Harvard and Von Neumann Architecture, Application of Embedded System, Embedded operating system, Design Parameters of embedded and its Significance, Design life cycle, Hardware fundamentals, Digital circuit parameter, O.C and Tristate outputs, I/O sink and Source, Custom single purpose processor Optimization, FSMD, data path & FSM, General purpose Processor and ASIP'S

UNIT 2

8051 Microcontrollers: 8051 microcontrollers-Assembly language, Architecture of 8051, Registers, Addressing Modes, Instruction Set, I/O ports, memory organization, Programs showing use of I/O Pins, Interrupts, Interrupt Programming, Timer and counters, Serial Communication, Programming of serial communication.

UNIT 3

Introduction to operating system and basics of higher embedded system: Introduction to RTOS, Tasks, Data, Semaphores and shared data, Operating system services, Message queues, Mailboxes, Advanced processor (Only architecture), 80386, 80486, Introduction to ARM, features, architecture, instruction set

UNIT 4

Communication basics and interfacing of various devices the microcontroller: Microprocessor interfacing I/O addressing, direct memory access (DMA), Arbitration, multilevel bus architecture, serial protocol, parallel protocols and wireless protocol, Real world interfacing: LCD, Stepping motor, ADC, DAC, LED, Pushbuttons, Keyboard, Latch connection, PPI

Text / Reference Books:

1. Embedded system Design-Frank Vahid/ Tony Givargis. John Willey

2. Microcontroller (Theory and applications) Ajay V Deshmukh, Tata , McGraw-Hill

3. An Embedded Software Primer-David E.Simon, Pearson Education

4. The 8051 Microcontroller and embedded systems-Muhammad Ali Mazidi and Janice Gillispie.

5. Microcontrollers (Architecture, Implementation & Programming) Kenneth Hinz, Daniel Tabak, Tata McGraw-Hill

6. 8051 Microcontrollers & Embedded Systems 2nd edition Sampath Kr. Katson books

EENO-412A			Autom	obile Engine	eering			
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)	
				Test	Test			
3	0	0	3	75	25	100	3	
Program Objective (PO)	To make aware the students with the study of engineering which teaches manufacturing and mechanical-mechanisms as well operations of automobiles. It is an introduction to vehicle engineering which deals with motorcycles, cars, buses trucks etc. It includes branch study of mechanical, electronic, and safety elements. Some of the engineering attributes and disciplines that are of importance to the automotive engineer.							
			Course Outco	omes (CO)				
After complet	tion of cours	e students w	ill be able to			1		
CO1	Students w the automo	ill be able to [bile industry	Develop a stro	ong base for i	understanding	g future deve	lopments in	
CO2	Students will be able to Explain the working of various parts like engine, transmission, gear box etc.							
CO3	Students w	Il be able to D	escribe how t	he brakes and	d the suspens	sion systems	operate	
CO4	Students wi	Il be able to U	nderstand the	e steering geo	metry and en	nission contro	l system.	

UNIT I

Introduction: Brief history of automobiles, Main components of an automobile, Brief description of each component. Brief description of constructional details and working of a four stroke I.C. Engine (S.I. Engines and C.I. Engines) including lately developed overhead cam shaft, Multi-cylinder engines, Introduction to recent developments in I.C. Engines- Direct injection systems, Multi-point fuel injection systems, Introduction, Brief description of different components of Transmission System.

Clutch: Introduction to Clutch and its different types, Principle of Friction Clutch, Clutch Lining and friction materials used in Friction Clutches, Torque transmitted, Brief description of Cone Clutch, Single Plate and Multiplate Clutches, Dry and wet clutches, Automatic clutch action, Centrifugal clutches, Electromagnetic clutches, Fluid Flywheel.

UNIT II

Gear Box: Gear Box Air resistance, gradient resistance and rolling resistance coming across a moving automobile, Tractive effort, Variation of tractive effort with speed, Performance curves (object and need of a gear box), Sliding mesh gear box, Control mechanism, Sliding type selector mechanism, Ball type selector mechanism, Steering column gear shift control, Constant mesh gear box, Synchromesh device, Automatic transmission in general, AP automatic gear box, Torque converter, Torque converter with direct drive, Lubrication of Gear Box.

Propeller Shaft: Functions and requirements of a propeller shaft, Universal joints, Constructional forms of universal joints, Flexible-ring joints, Rubber-bushed flexible joints. Constant-velocity joints. Differential : Principle of operation, Constructional details of a typical Differential unit, Traction control differentials, Multiplate clutch type traction control device.

UNIT III

Brakes: Functions and methods of operation, Brake efficiency. Elementary theory of shoe brake, brake shoe adjustments, A modern rear-wheel brake, Disc brakes, Brake linkages, Leverage and adjustment of the brake linkage, Servo- and power operated brakes, Vacuum brake operation,' Hydraulic Brakes-constructional details and working, Direct action vacuum servos, Power-operated brakes, A dual power air brake system,

Suspension system: Suspension principles, Road irregularities and human susceptibility, Suspension system, Damping, Double tube damper, Single tube damper, Lever arm type damper, Springs-Leaf springs,

Coil and torsion springs, variable rate springs, Composite leaf springs, Rubber springs, Air springs, Adjustable and self-adjusting suspensions, Interconnected suspension system, Interconnected air and liquid suspensions, Independent suspension system, Different independent suspension layouts, McPherson strut type, Rear suspension-live axle, McPherson strut rear suspension.

UNIT IV

Steering Geometry: Castor, Camber, Kingpin inclination, Combined angle, Toe-in, Steering system-basic aims, Ackerman linkage, Steering linkages for independent suspension, Center point steering, Costarring or trailing action, Cornering power, Self-righting torque, Steering characteristics-over steer and under steer, Axle beam, Stub-axle construction, Steering column, Reversible and irreversible steering, Rack-and-pinion steering mechanism, Effect of toe-in on steering, Power steering, Vickers System. Recent trends in automobile engineering Multi fuel automobiles, Automobiles running on alternate sources of energy, Emission control through catalytic converter, Double catalytic converter, Aspects of pollution control in Automobiles.

Reference and Text Books:

- 1. The Motor Vehicle By Newton, Steeds and Garretle Basic
- 2. Automobile Engineering By Kirpal Singh
- 3. Automobile Engineering * -By K.M. Gupta, Umesh Publications

EEO-418A		В	iomedical Si	gnal & Image	Processing					
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time(Hrs)			
				Test	Test					
3	0	0	3	75	25	100	3			
Program Objective (PO)	To make stud processing ar	To make students aware about the fundamentals and various techniques of biomedical image processing and to develop the algorithms for image analysis and diagnosis in medical imaging								
		С	ourse Outco	mes (CO)						
After complet	ion of course	students will	be able to							
CO1	To understan	d image fundai	mentals and a	cquisition tech	niques					
CO2	To learn Imag	ge Enhanceme	nt in Spatial a	nd Frequency	domain	1				
CO3	To learn Morp	hological Imag	e Processing	and Image Se	gmentation.					
CO4	To learn imag	e compression	and represen	itation.						

UNIT-I

Fundamentals of Digital Image: Image formation, visual perception, CCD & CMOS Image sensor, Image sampling: Two dimensional Sampling theory, Nonrectangular grid and Hexagonal sampling, optimal sampling, Image quantization, Non uniform Quantization, Image formats. Types of pixel Operations, Types of neighborhoods, adjacency, connectivity, boundaries, regions, 2D- convolution, Color models.

UNIT-II

Image Enhancement in Spatial and Frequency domain: Basic gray level transformations, histogram processing, Smoothing operations, Edge Detection-derivative based operation, filtering in frequency domain, 2D-DFT, Smoothing frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering.

UNIT-III

Morphological Image Processing: Dilation and Erosion, Opening and Closing, Hit-or-Miss transformation, Boundary Extraction, Region filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening, Skeletons, Pruning.

Image Segmentation: Detection of discontinuities, Point-line- edge detection, Linear and Circular Hough Transform, Basic Global and Adaptive Thresholding, Region Based segmentation, K-Means Clustering

UNIT-IV

Image Compression: Fundamentals of Image compression models, Lossless compression: variable length coding, LZW coding, Arithmetic coding, Lossy compression: Wavelet and DCT coding, Predictive coding. Representation and Description: Image features, Feature extraction, Chain code, Moments Text Books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education
- 2. Digital Image Processing, S. Sridhar Oxford University Press.
- 3. Fundamentals of Digital Image Processing, A.K. Jain .P.H.I.
- 4. Digital Image Processing, William Pratt- John Wiley.
- 5. Feature Extraction and Image Processing, Mark S. Nixon and Alberto S. Aguado.
- 6. Digital Image Processing and Analysis, Chanda Majumder- Printice Hall India.
- 7. Medical image processing, Geoff Dougherty editor, springer.