Scheme of Studies/Examination Semester VIII

				Semest					
S. No.	Course No.	Subject	L:T:P	Hours/ Week	Exami	Duratio n of Exam (Hrs)			
					Theory	Sessiona ls	Practical	Total	
1	ECE- 402N	Wireless & Mobile	4:0:0	4	75	25	0	100	3
2	ECE- 404N	Microwave Engineering	3:0:0	3	75	25	0	100	3
3	ECE- 420N	Core Elective –III:	3:0:0	3	75	25	0	100	3
4	ECE- 422N	Core Elective –IV: Radar Engineering **	3:0:0	3	75	25	0	100	3
5	ECE- 406N***	Project-II	0:0:14	14	0	100	100	200	3
6	ECE- 408N	Wireless & Mobile	0:0:3	3	0	40	60	100	3
7	ECE- 410N	Microwav e	0:0:3	3	0	40	60	100	3
8	ECE- 412N*	Seminar & Report Writing	2:0:0	2	0	100	0	100	3
		Total		35	300	380	220	900	
9	ECE- 440N****	General Fitness & Professional Aptitude						100	3

* The performance of the student will be evaluated by the presentation delivered and the report submitted by the student related to Industrial/Research problems & its suggested solutions.

***The project should be initiated by the student in continuation of the 7th semester and will be evaluated in the end of the semester on the basis of a presentation and Report.

****A viva of the students will be taken by external examiner (Principal/Director/Professor/or any senior Person with Experience more than10 years) at the end of the semester and grades will be given according to the grade

Vision of the Department:

The Electronics and communication Engineering Department is looking forward to cater the latest industrial needs to produce skilful engineers who are innovative, entrepreneurial and result oriented.

Mission of the Department:

To provide the students with lifelong learning needed for a productive career on the grounds of ethics, good governance, and quality and to disseminate knowledge by upholding innovative services to provide collective environment that inspires every stakeholder.

1. Program Specific Outcomes (PSO):

PSO1	Study and implementing the fundamental concepts of electronics and		
	communication systems.		
PSO2	Design, develop and analyze advance model of electronics and		
	communication system		

2. Program Outcomes (PO)

1. Apply knowledge of mathematics, science, engineering fundamentals and electronics communication and engineering for the solution of engineering problems.

2. Problem analysis- Identify, analyze complex engineering problems reaching substantiated conclusions using basic of electronics engineering & mathematics.

3. Conduct Investigations of complex problems:- Developing presumed concept & providing valid facts behind using experiments, analysis and interpretation of data and synthesis of information.

4. Design and construct a electronic system or process to meet industry, domestic society needs, safety and sustainability.

5. Modeling &implementing complex engineering activities using modern tools & techniques.

6. The engineer and society:- Apply acquired knowledge to address the societal issue in relevance to professional engineering practices.

7. Environment & sustainability: - Understand the impact of professional engineering solutions in environmental contexts and demonstrate knowledge of and need for visible sustainability.

8. Work as professionals in accordance with the norms of electronics practices and commit to social, ethical and professional responsibilities.

9. Individual & Team work:- To inculcate an effective behavior in leader in diverse team and in multidisciplinary settings.

10. To converse effectively various engineering activity to various modes to all levels of society.

11. Understand and implement project management techniques, tools and methods to finalize.12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning. Imparting the ability individual for lifelong learning and working independently in changing technological environment.

3. PEOs

1. To prepare ECE graduates for supporting and leadership roles in multi deplaning domain with ethical values.

2. To prepare ECE graduates with a zeal for continuing, high degrees research and other professional developments.

3. To prepare ECE graduate with entrepreneurial skills and to encourage implementation and services via technical & communicational attributes.

CONTENTS

- 1. Scheme
- 2. Wireless & Mobile Communication
- 3. Microwave Engineering
- 4. Transducers & Its Applications
- 5. Radar Engineering
- 6. Wireless & Mobile Communication lab
- 7. Microwave Engineering Lab

ECE-402N		WIR	ELESS & MOR	BILE COMMUN	ICATION		
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time	
4	0	0	75	25	100	3	
Purpose	To introduce	the concept	ts of wireless / m	obile communica	tion using ce	llular	
	environment	. To make tl	he students to kn	ow about the vari	ous modulati	on techniques,	
		methods. an	d multi access te	chniques used in	the mobile co	ommunication.	
Course Out							
CO 1	It deals with	the fundam	ental cellular rad	io concepts such	as frequency	reuse and	
CO 2			1 1	unking efficiency		0	
	interference	issues betwe	een mobile and b	ase stations comb	oine to affect	the overall	
	capacity of cellular systems.						
CO 3	It provides i	dea about an	alog and digital	modulation techn	iques used in	wireless	
	communicat	ion.					
CO 4	It presents different ways to radio propagation models and predict the large – scale						
	effects of radio propagation in many operating environment.						
CO 5	Classify multiple access techniques in mobile communication.						
CO 6	Describe GSM architecture and protocols.						

Unit–I

Introduction to Wireless Communication Systems: Evolution of mobile radio communications, examples of wireless comm. systems, paging systems, Cordless telephone systems, comparison of various wireless systems.

Modern Wireless Communication Systems: Second generation cellular networks, third generation wireless networks, wireless in local loop, wireless local area networks, Blue tooth and Personal Area networks.

Unit–II

Introduction to Cellular Mobile Systems: Spectrum Allocation, basic Cellular Systems, performance Criteria, Operation of cellular systems, analog cellular systems, digital Cellular Systems.

Cellular System Design Fundamentals: Frequency Reuse, channel assignment strategies, handoff Strategies, Interference and system capacity, tracking and grade off service, improving coverage and capacity.

Unit– III

Multiple Access Techniques for Wireless Communication: Introduction to Multiple Access, FDMA, TDMA, Spread Spectrum multiple Access, space division multiple access, packet ratio, capacity of a cellular systems.

Unit–IV

Wireless Standards-GSM, IS-95, UMTS-IMT-2000, Signaling, Call Control, Mobility Management and location Tracing.

Suggested Books:

- 1. Theodore S.Reppaport, Wireless Communications Principles and Practice, IEEE Press, Prentice Hall.
- 2. William C.Y.Lec, Mobile Cellular Telecommunications, Analog and Digital Systems, Mc-Graw Hill Inc.
- 3. Kamilo Feher, Wireless Digital Communications, Modernization & Spread Spectrum Applications, Prentice Hall of India, New Delhi.
- 4. Kaveh Pahlavan and Allen H. Levesque "Wireless Information Networks", Wiley Series, John Wiley and Sons Inc.

Lectur	re Topic					
L1	INTRODUCTION TO SUBJECT					
L2	EVOLUTION OF MOBILE RADIO COMMUNICATIONS					
L3	EXAMPLES OF WIRELESS COMM. SYSTEMS, PAGING SYSTEMS					
L4	CORDLESS TELEPHONE SYSTEMS, COMPARISON OF VARIOUS					
	WIRELESS SYSTEMS.					
L5	SECOND GENERATION CELLULAR NETWORKS, THIRD GENERATION					
	WIRELESS NETWORKS					
L6	WIRELESS IN LOCAL LOOP, WIRELESS LOCAL AREA NETWORKS					
L7	BLUE TOOTH AND PERSONAL AREA NETWORKS.					
L8	REVISION OF UNIT 1					
L9	SPECTRUM ALLOCATION, BASIC CELLULAR SYSTEMS					
L10	PERFORMANCE CRITERIA, OPERATION OF CELLULAR SYSTEMS					
L11	ANALOG CELLULAR SYSTEMS, DIGITAL CELLULAR SYSTEMS.					
L12	FREQUENCY REUSE, CHANNEL ASSIGNMENT STRATEGIES,					
L13	HANDOFF STRATEGIES, INTERFERENCE AND SYSTEM CAPACITY, TRACKING AND GRADE OFF SERVICE					
L14 L15	INACKING AND GRADE OFF SERVICE IMPROVING COVERAGE AND CAPACITY.					
L15 L16	REVISION OF UNIT 2					
L10 L17	DISCUSSION OF SESSIONAL 1					
L17 L18	INTRODUCTION TO MULTIPLE ACCESS					
L10 L19	FDMA					
L19	TDMA					
L20 L21	SPREAD SPECTRUM MULTIPLE ACCESS					
L22	SPACE DIVISION MULTIPLE ACCESS					
L23	PACKET RATIO, CAPACITY OF A CELLULAR SYSTEMS.					
L24	REVISION OF UNIT 3					
L25	GSM					
L26	IS-95					
L27	UMTS-IMT-2000					
L28	SIGNALING, CALL CONTROL					
L29	MOBILITY MANAGEMENT AND LOCATION TRACING.					
L30	REVISION OF UNIT 4					
L31	DISCUSSION OF SESSIONAL 2					
L32	CONTENT BEYOND CURRICULUM					

Tutorial Sheet 1

- Q1. Briefly explain the different generation of wireless communication systems.
- Q2. Write a brief note on wireless local area network.
- Q3. Differentiate personal area network and Bluetooth.
- Q4. Give an account of various Radio channels.

Tutorial Sheet 2

Q1. Explain various diversity techniques.

- Q2. Explain spread spectrum techniques.
- Q3. Describe various digital modulation techniques for mobile radio.
- Q4. Compare different Multiple Access Techniques.
- Q5. What is the concept of Digital Modulation for Mobile Radio?

Tutorial Sheet 3

- Q1. Explain basic cellular concept and frequency reuse.
- Q2. Compare FDMA, CDMA, and TDMA.
- Q3. Explain spectrum efficiency.
- Q4. What is handover analysis?
- Q5. Which of the Multiplexing techniques is better? Give reasons.

Tutorial Sheet 4

- Q1. Explain UMTS-IMT-2000.
- Q2. Explain IS-95
- Q3. What is call control & Mobility management?
- Q4. What is soft capacity and Erlang capacity?
- Q5. What is location tracing?

Roll No.

Total Pages : 04

BT-8/M-19 38139 WIRELESS AND MOBILE COMMUNICATION ECE-402N

Time : Three Hours]

[Maximum Marks: 75

Note : Attempt *Five* questions in all, selecting at least *one* question from each Section.

Section I

1.	(a)	Explain the principle of Cellular Networks and	
		various types of Handoff techniques. 8	
	(\$)	Under what circumstances, static channel assignment	
40		is normally used ? 4	
	(¢)	Distinguish between a cell and a cell site. 3	
2.	(a)	What are advantages of cellular mobile communication systems over conventional mobile	2
		telephone system ? 8	
	(b)	Describe the step-by-step procedure for placing a call from a calling mobile subscriber to a called	
		landline telephone subscriber. 7	
(3-10)	8/8) L-	38139 P.T.O.	

Section II

- 3. (a) Discuss the similarities and differences between a conventional cellular radio system and a space-based (satellite) cellular radio system. What are the advantages and disadvantages of each system ? Which system could support a larger number of users for a given frequency allocation ? Why ? How would this impact the cost of service for each subscriber ?
 - (b) Explain in detail capacity of cellular system. Explain the benefits of Frequency Re-use and using Hexagonal cells and give the concept of Handoff and Handover ?
- 4. (a) Discuss, what are the problems encountered in implementing handoff strategies and how they are resolved ?
 - (b) A cellular system has a total 500 duplex voice channels without frequency reuse. The service area is divided into uniform 150 cells. The required C/I value is 18 dB. Determine the cell cluster size, number of cell clusters in the given service area, and maximum number of users at any instant in the service area. Assume the path-loss exponent as 3. 7

L-38139

2

450

Section III

- 5. (a) The basic TDMA frame structure of GSM cellular system comprises of 156.25 bits in a time slot. of which 40.25 bits are overhead (ignoring the 2 flag bits), compute the frame efficiency.
 - (b) Explain the main properties of the basic multiple access techniques-FDMA, TDMA, and CDMA. 7
- 6. (a) In IS-136 TDMA cellular system, the one-way allocated RF bandwidth is 12.5 MHz. The channel spacing is 30 kHz. There are 395 voice channels in the system. The TDMA frame duration is 40 ms, with 6 time-slopts per frame. The system offers an individual user data rate of 16.2 kbps in which the speech with error protection is @ 13 kbps. Compute the overall system efficiency.
 - (b) Compare similarities and differences in the fundamental concepts of a DS-SS system versus FH-SS System. 7

(3-108/9) L-38139

Section IV

- 7. (a) What is the different between a physical channel and a logical channel ? Describe the important functions of various types of logical channels in GSM.
 8
 - (b) With the help of a block diagram draw the GSM network architecture and identify various interfaces used in its different entities.
- 8. Explain the following in detail :
 - (a) FDMA
 - (b) IMT-2000
 - (c) 1S-95.

L-38139

5

5

5

ECE-404N			MICROWAV	E ENGINEER	ING	
Lecture	Tutoria	Practical	Theory	Sessional	Total	Time
3	0	0	75	25	100	3 Hrs
Purpose				technology the		
	create a	wareness a	about conven	tional microwa	ave resonator	rs, generators,
	componen	nts and dev	ices along wit	h the importance	e of scattering	g parameters so
	that the le	earner is abl	e to design and	d apply these bas	sic approaches	in commercial
			Course Ou	tcomes		
CO1	Learner	will be abl	e to mathema	tically design b	oasic resonato	or cavities and
	will be	able to n	neasure micr	owave parame	eters such a	s impedance,
	frequency and VSWR etc.					
CO2	Learner will learn the conventional methods to generate the microwaves.					
CO3	Learner will be able to know the basic understanding of construction &					
	principle of working of microwave generator.					
CO4	Learner will know about the importance of scattering parameters along with					
	its applications in the analysis of basic microwave components.					
CO5	Learner will learn about transferred electron and avalanche transit time					
	devices in detail.					
CO6	Learner	will be able	e to know the	application area	a of microway	ves.

Unit-I

Microwave Resonators: Brief description of waveguides, coplanar waveguides, cavity resonators: rectangular, cylindrical, spherical and coaxial, excitation and coupling of cavities, Q factor. Microwave Measurements: Measurement of Frequency, Impedance (using slotted section) attenuation, power, dielectric constant, measurement of V.S.W.R., insertion loss and permeability

Unit-II

Microwave Generators: Construction, characteristics, operating principle and typical applications of Klystron (two cavity, multicavity), Reflex Klystron, magnetron (Cylindrical magnetron and description of Π mode applications) and Traveling Wave Tube (TWT).

Unit-III

Matrix Description of Microwave Circuits: Scattering Matrix: properties, measurement of scattering coefficients, scattering matrices for common microwave systems. Microwave Components: Waveguide tees- E-plane, H-plane, magic tee, rat race, directional coupler, tuning screws and stubs, isolators and circulators- their constructional features and applications. Microwave filters, Phase shifters, attenuators and frequency meter.

Unit-IV

Solid State Microwave Devices: Transferred Electron Devices-Gunn Effect; negative differential resistance phenomenon, field domain formation, Gunn diode structure. Avalanche transit time devices: IMPATT, TRAPATT, BARITT diodes, parametric amplifiers.

Text Book:

1. Samuel Y. Liao, Microwave Engineering, Pearson Education 3rd/4th/ higher Ed.

Reference Books:

- Annapurna & Sisir K. Das, Microwave Engineering, Tata McGraw-Hill.
 David M. Pozar, Microwave Engineering, John Wiley and Sons Inc.

LECTURE PLAN

Lecture	Topic
L1	Microwave Resonators: Brief description of waveguides
L2	Coplanar waveguides
L3	Cavity resonators: rectangular, cylindrical,
L4	Cavity resonators: spherical and coaxial
L5	Excitation and coupling of cavities
L6	Q-factor.
L7	Microwave Measurements: Measurement of Frequency
L8	Measurement of Impedance (using slotted section), attenuation,
L9	Microwave Measurements: power, dielectric constant
L10	Measurement of V.S.W.R.
L11	Measurement of Insertion loss and permeability
L12	Microwave Generators: Construction, characteristics
L13	operating principle and typical applications of Klystron (two cavity, multicavity)
L14	Reflex Klystron
L15	Magnetron (Cylindrical magnetron and description of Π mode applications)
L16	Magnetron (Cylindrical magnetron and description of Π mode applications) contd.
L17	Traveling Wave Tube (TWT).
L18	Matrix Description of Microwave Circuits: Scattering Matrix: properties
L19	Measurement of scattering coefficients
L20	Scattering matrices for common microwave systems
L21	Microwave Components: Waveguide tees- E-plane
L22	H-plane, magic tee
L23	rat race, directional coupler
L24	Tuning screws and stubs

- L25 Isolators and circulators- their constructional features
- L26 Isolators and circulators- Applications
- L27 Microwave filters, Phase shifters
- L28 Attenuators and frequency meter.
- L29 Solid State Microwave Devices: Transferred Electron Devices-Gunn Effect
- L30 Negative differential resistance phenomenon
- L31 Field domain formation
- L32 Gunn diode structure
- L33 Avalanche transit time devices
- L34 IMPATT diode
- L35 TRAPATT, BARITT diodes
- L36 Parametric amplifiers.

Tutorial Sheet – 1

- Q1. Explain the construction and operation of microwave transistors giving the emphasis on their performance characteristics.
- Q2. Discuss the power frequency, current frequency and voltage frequency limitation with respect to microwave transistors.
- Q3. Explain microwave cavity.
- Q4. Explain the working of rectangular cavity resonator.
- Q5. Explain Q factor.

Tutorial Sheet – 2

- Q1. Explain process of velocity modulation in reflex klystron.
- Q2. Obtain expressions for power output and efficiently of the reflex klystron.
- Q3. Give the difference between TWT and klystron.
- Q4. Explain construction and working of helical TWT.
- Q5. What is meant by mode jumping?

Tutorial Sheet –3

- Q1. What are the scattering parameters? Give their importance in microwave work..
- Q2. Explain advantages and disadvantages of parametric devices.
- Q3. Explain the interaction between dictions and fields wrt electric field only.
- Q4. Explain insertion loss & Permeability.
- Q5. Explain microwave circulator with its scattering matrix.

Tutorial Sheet-4

- Q1. Give the electronics application of MOSFET.
- Q2. Define waveguide microwave junction.
- Q3. Explain LSA diode.
- Q4. Explain Rat Race.
- Q5. Explain phase shifter. Where it is used in microwave.

Tutorial Sheet-5

- Q1. Explain TRAPTT and BARITT diodes.
- Q2. Explain microwave filters.
- Q3. Explain magic Tee.
- Q4. What is the function of idler circuit in a parametric circuit?
- Q5. Define field domain formation.

Roll No.

Total Pages : 03

BT-8/M-19 38140 MICROWAVE ENGINEERING ECE-404N Opt. (II)

Time : Three Hours]

[Maximum Marks: 75

Note : Attempt *Five* questions in all, selecting at least *one* question from each Unit.

Unit I

- 1. (a) Find the lowest four cut off frequencies for an air filled rectangular wave guide when a/b = 2 with a = 4 cm. Also find the modes that can be used to transit 8 GHz.
 - (b) Derive the unloaded quality factor of rectangular cavity for its dominant mode.
 7
- 2. (a) Explain the slotted line method of impedance measurement.
 8
 - (b) Explain the down conversion method of frequency measurement.
 7

(2-61/7) L-38140

P.T.O.

- 3. (a) A Reflex Klystron operates under the following condition Beam Voltage (V₀) = 600 V, drift space length (L) = 1 mm, shunt resistance of the cavity (Rsh) = 15 KΩ and f_r = 9 GHz. The tube is oscillating at f_r at the peak of the n = 2 mode or 1(3/4) mode. Beam loading and transit time effects are neglected. Determine (i) Repeller Voltage (ii) Direct current necessary to give a microwave gap voltage of 200 V. (ii) Electronic efficinecy.
 9 (b) Explain the π-mode oscillation phenomenon and its
 - (b) Explain the π -mode oscillation phenomenon and its importance for Cylindrical Magnetron. 6
 - (a) Explain the bunching process with necessary expressions of Two Cavity Klystron amplifier ? 8
 (b) A helix travelling wave tube is operated with a beam current of 300 mA beam voltage of 5 kV and characteristics impedance of 20Ω. Find the length of the helix to give an output power gain of 50 dB at f = 10 GHz ? 7

Unit III

- (a) Describe the operation of E-plane Tee and derive its S-matrix.
 - (b) Explain the working of precision phase shifter and its s-Matrix in detail. 7

L-38140

4.

(a) Explain Faraday rotation isolator in detail.

6.

 (b) Explain the operation of Directional coupler and derive its S-matrix.

8

Unit IV

- 7. (a) Explain the negative differential phenomenon of GUNN Diode using two valley model theory ? 8
 - (b) Explain the construction and operation of IMPACT diode in detail.
 8
- 8. (a) An IMPATT diode has the following parameters : Carrier drift velocity = 10⁵ m/s, length of drift space is 5 μm, maximum operating current is 150 mA, maximum operating voltage is 80 volt, and efficiency is 10%. Calculate (i) CW Power output, (ii) Frequency of oscillation produced.
 - (b) Explain the construction and operation of TRAPATT diode.
 8

ECE-							
420N			Transdu	icers & Its A	pplications		
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time
3		-	3	75	25	100	3
		ding the strue					
	transduce	rs used for vari	ious physical	and nonelect	ric quantities	s and how to	use them
	to measure these quantities.						
	Course Outcomes						
CO 1	Explain the principles of operation of the sensor parameters and generators						
CO 2	Interpretation of the measurement results by using transducers.						
CO 3	Development of measurement schemes for different non electrical quantities						
CO 4	Assimilating knowledge about the implementation of sensors and transducers.						
CO 5	Analyze the performance characteristics of each instrument						
CO 6	Explain the	e terminologio	es of sensors	s and their a	pplications	in industry	y

Unit-I

Definition of transducer. Advantages of an electrical signal as out-put. Basic requirements of transducers, Primary and Secondary Transducer, Analog or digital types of transducers. Resistive, inductive, capacitive, piezoelectric, photoelectric and Hall Effect transducers.

Unit-II

Measurement of Pressure – Manometers, Force summing devices and electrical transducers Measurement of Temperature - Metallic resistance thermometers, semi conductor resistance sensors (Thermistors), thermo-electric sensors, pyrometers.

Unit-III

Measurement of Displacement – Potentiometric resistance type transducers, inductive type transducers, differential transformer (L.V.D.T), capacitive transducers, Hall Effect devices, strain gage transducers.

Measurement of Velocity - variable reluctance pick up, electromagnetic tachometers, photoelectric tachometer, toothed rotor tachometer generator.

Unit-IV

Measurement of Force - Strain-gage load cells, pneumatic load cell, LVDT type force transducer. Measurement of Torque - Torque meter, torsion meter, absorption dynamometers, inductive torque transducer, digital methods.

Suggested Books:

1.B.C. Nakra, K.K. Chaudhry, "Instrumentation Measurement and Analysis," Tata McGraw-Hill Publishing Company Limited, New Delhi.

2. Thomas G. Beckwith etc. all, "Mechanical Measurements (International Student Edition), Addison-Wesley Longman, Inc. England.

3.A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation," Dhanpat Rai & Sons, Delhi-6.

LECTURE PLAN

LECTURE	TOPIC
L1	Definition of Transducer

- L2 Advantages of an Electrical Signal as Output
- L3 **Basic Requirements of Transducers**
- Primary and Secondary Transducer. L4
- L5 Analog or Digital Types of Transducers
- L.6 Resistive

L7	Inductive
L8	Capacitive
L9	Piezoelectric
L10	Photoelectric
L11	Hall Effect Transducers
L12	Measurement of Pressure- Manometers
L13	Force Summing Devices and Electrical Transducers
L14	Measurement of Temperature- Metallic Resistance Thermometers
LI 5	Semi Conductor Resistance Sensors
L16	Thermistors
L1T	Thermoelectric Sensors
L18	Pyrometers
L19	Measurement of Displacement- Potentiometric Resistance Type Transducers
L20	Inductive Type Transducers
L21	Differential Transformer (LVDT)
L22	Capacitive Transducers
L23	Hall Effect Devices
L24	Strain Gauge Transducers
L25	Measurement of Velocity- Variable Reluctance Pick Up
L26	Electromagnetic Tachometers
L27	Photoelectric Tachometer
L28	Toothed Rotor Tachometer Generator
L29	Measurement of Force - Strain Gauge Load Cells
L30	Pneumatic Load Cell
L31	LVDT Type Force Transducer
L32	Measurement of Torque-Torque Meter
L33	Torsion Meter
L34	Absorption Dynamometers
L35	Inductive Torque Transducer
L36	Digital Methods

TUTORIAL SHEET -1

- Q1. Define transducers. What are the basic requirements of transducers?
- Q2. Explain analog and digital transducers.
- Q3. Explain resistive and inductive transducers.
- Q4. Differentiate between piezoelectric and photoelectric transducers.
- Q5. What are primary and secondary transducers?

TUTORIAL SHEET -2

- Q1. Explain method of measuring high pressure.
- Q2. Explain force summing devices.
- Q3. Explain metallic resistance thermometer for measuring temperature.
- Q4. What are thermistors?
- Q5. What is the principle of pyrometer?

TUTORIAL SHEET -3

- Q1. Explain potentiometric resistance type transducers.
- Q2. Explain the principle of LVDT.
- Q3. Differentiate between inductive type and capacitive type transducers.
- Q4. What is Hall Effect?
- Q5. What is the principle of electromagnetic tachometers?

TUTORIAL SHEET -4

- Q1. What is photoelectric tachometer?
- Q2. Explain strain gauge load cells.
- Q3. Explain pneumatic load cells.
- Q4. What is torque? Explain working of torque meter.
- Q5. A variable reluctance type tachometer has 120 teeth on rotor. The speed of the shaft on which the rotor is mounted is 1500 rpm. Determine the frequency of output pulses.

TUTORIAL SHEET -5

- Q1. Explain torsion meter.
- Q2. Explain absorption dynamometers.
- Q3. Explain inductive torque transducers.
- Q4. Explain digital methods of measuring torque.
- Q5. Explain LVDT type force transducers.

Total Pages: 03

Roll No.

BT/8/M-19 38144 TRANSDUCER AND ITS APPLICATIONS ECE-420N

Time : Three Hours]

[Maximum Marks: 75

Note : Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

1. (a) Discuss the basic requirements of a Transducer.

71/2

- (b) Differentiate between active and passive transducers.
 7¹/₂
- Describe the properties of a material used for piezoelectric transducers. Also, discuss in detail the construction, working and applications of Photoelectric transducers.

15

(3-80/1) L-38144

P.T.O.

3. What are Manometers ? How are they used to measure pressure ? Define the terms force constant and pressure constant relative to an elastic pressure diaphragm.

15

 Differentiate between Optical pyrometer and radiation pyrometers. Draw appropriate diagrams to support your answer.
 15

Unit III

- Discuss the construction and working principle of a Linear Variable Differential Transformer (LVDT). Also discuss how a LVDT can be used to measure the position and displacement.
- Describe the working of a photoelectric tachometer with a neat diagram. Describe its construction details also.

L-38144

2

- 7. How does a pneumatic load cell work ? Discuss the differences between a pneumatic load cell and a straingauge load cell.
 15
- 8. Write short notes on any two of the following :
 - (a) Absorption dynamometers
 - (b) Digital methods to Torque measurement
 - (c) Inductive torque transducer.

ECE-							
422N			Ra	dar Engine	ering		
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time
3	0	0	3	75	25	100	3 Hr.
	To familiar	ize the student	s with the co	oncepts of rad	dar, various	types of rad	lar, radar
Purpose	mixers and	l various oth	er technolog	gies.			
	Course Outcomes						
CO 1	To understand the concept of basics of radar, its equation and signals associated with radar						
CO 2	To understand the concept of CW and MTI radar.						
CO 3	To understand the concept of Pulse Doppler radar.						
CO 4	To familiarize with the concept of tracking radar.						
CO 5	To familiarize with the concept of radar receiver, mixers and duplexers.						
CO 6	To familiarize with the concept of protectors.						

Unit- I

Radar BASICS: Radar Block Diagram & operation, Applications of Radar.

Radar Equation: Simple form of Radar Equation, Detection of signals in noise, Signal to Noise ratio, Transmitter Power. Pulse repetition frequency)' & range ambiguities, System losses, Propagation effects.

Unit- II

CW & Frequency Modulated Radar: The Doppler effect, CW Radar, FM- CW Radar, Multiple Frequency CW Radar.

MTI & Pulse Doppler radar: Introduction, Delay Line Cancellors. Multiple or staggered Pulse repetition frequencies. Range-Gated Doppler Filters, Limitation of MTI performance, Noncoherent MTI, Pulse Doppler radar, MTI from a moving platform.

Unit-III

Tracking Radar: Tracking with Radar, Sequential Lobbing, Conical Scan, Monopulse Tracking Radar, Tracking in range, Acquisition, Low angle tracking.

Unit-IV

Receivers, Displays & Duplexers: Radar Receivers, Noise Figure, Mixer Low-noise Front ends. Displays, Duplexer, Receiver protectors.

Text Book:

1. Introduction to Radar Systems: Merrill. Skolnik, MGH

Reference Book:

1. Electronic Communication Systems: Kennedy; TMH.

LECTURE PLAN

LECTURE	TOPIC
LECIURE	TOFIC

- L1 Radar Basics: Radar Block Diagram & operation
- L2 Application of Radar
- L3 Simple form of Radar Equation,
- L4 Minimum Detectable Signal
- L5 Receiver Noise
- L6 Signal to Noise Ratio
- L7 Transmitter Power
- L8 Pulse Repetition Frequency
- L9 Range Ambiguities

L10	System Losses
L11	Propagation effects
L12	CW & Frequency Modulated Radar, The Doppler Effect
L13	CW Radar
L14	FM- CW Radar
L15	Multiple Frequency CW Radar
L16	Introduction to MTI and Pulse Doppler Radar
L17	Delay Line Cancellors, Multiple or Staggered
LI 8	Pulse Repetition frequencies
LI 9	Range-Gated Doppler Filters
L20	MTI Delay Line
L21	Limitation of MTI performance
L22	Noncoherent MTI Pulse, Doppler Radar
L23	MTI from a moving platform
L24	Tracking with Radar
L25	Sequential Lobbing
L26	Conical Scan
L27	Monopulse Tracking Radar
L28	Tracking in range
L29	Acquisition
L30	Introduction to Receivers, Displays & Duplexers
L31	Radar Receivers
L32	Noise Figure
L33	Mixer
L34	Low-Noise Front Ends
L35	Displays
L36	Duplexer, Receiver Protectors

TUTORIAL SHEET -1

- 1. Discuss the construction of Radar System and explain each part in detail.
- 2. Derive the standard equation for Radar system.
- 3. Define Signal to Noise Ratio, Transmitted power.
- 4. Explain in detail the propagation effects in Radar system.
- 5. Write a note on system losses that occur in Radar system.

TUTORIAL SHEET -2

- 1. Explain Doppler effect?
- 2. Discuss the working principle of multiple frequencies CW Radar.
- 3. Explain Delay line cancellors.
- 4. Discuss the limitations of MTI performance.
- 5. Write a note on MTI with moving platform system.

6. Differentiate between CW and frequency modulated CW Radar. Explain the range measurement and Doppler measurement with frequency modulated Radar.

TUTORIAL SHEET -3

1. Explain different type of Tracking Radar System. Discuss anyone in detail help of block diagram.

- 2. What is Radar Tracking.
- 3. Explain the conical scan and sequential lobbing?
- 4. Explain the terms tracking in range and target acquisition?
- 5. Explain Monopulse Tracking Radar System.

TUTORIAL SHEET -4

- 1. What is different Radar Receiver? Discuss each of them.
- 2. Describe the low frequency RF amplifiers, mixers and detectors.3. What are Requirements for Radar Receiver?
- 4. Write a note on
- a) Duplexer
- b) Display
- c) Receiver Protector
- 5. Define Noise-figure in case of Radar Receiver.

Roll No.

.Total Pages: 03

BT-8/M-19 38145 RADAR ENGINEERING ECE-422N

Time : Three Hours]

[Maximum Marks : 75

Note : Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

Section I

- (a) Explain the operation of Radar with the help of its block diagram.
 - (b) A radar transmitter has a peak powder of 400 kW,
 a PRF of 1500 PPS and pulse width of 0.8s.
 Calculate :
 - (i) Maximum unambiguous range
 - (ii) Duty cycle
 - (iii) Average power
 - (iv) Suitable bandwidth. $4 \times 2=8$
- (a) Calculate the maximum radar range in terms of signal to noise ratio.

(3-101/17)L-38145

P.T.O.

(b) What is the peak power of a radar whose average power is 200 W, pulse width of 1 μs and pulse repetition frequency is 1 kHz. It has to detect the target of cross section 2 m² when it operates at a frequency of 3 GHz with the antenna diameter of 2 m, antenna aperture efficiency of 0.6 and mds is 10⁻¹² W. Also calculate the maximum range in nmi?

Section II

(a) Explain the working of Multiple Frequency CW radar with the help of block diagram.

7

7

- (b) Discuss the limitations of CW Radar.
- 4. (a) Explain staggered Pulse repetition frequency ? 7
 (b) Explain the operation of Coherent MTI Pulse Doppler Radar.

Section III

- 5. (a) Explain Sequential Lobbing method of tacking of an acquired target in detail.
 8
 - (b) Explain Tracking with radar in detail.

L-38145

6.	(a)	Explain	conical	scanning	method	of	tacking	of	an
		acquired	target	in detail.					8

 (b) Explain the acquisition of target and mono pulse tracking technique.
 7

Section IV

- 7. (a) Explain the purpose of mixer of and write different
 types of mixtures used in radar.
 7
 - (b) Explain different types of Radar display in brief.

8

7

8

- 8. Write short notes on the following :
 - (a) Low Noise Front Ends.
 - (b) Radar Protectors.

ECE- 410N	MICROWAVE ENGINEERING LAB					
Lecture	Tutorial	Practical	Sessionals	Practical	Total	Time
-		3	40	60	100	3Hour
Purpose	To give th Microwav		n idea about ti	he study and an	alysis of com	ponents used in
	·		Course Ou	tcomes		
CO1	Students w	vill learn the	steps to analyz	e microwave co	mponents.	
CO2	Students w	vill be able to	o find the chard	acteristics of mic	crowave com	ponents.
CO3	Students w	vill learn the	steps to analyz	e various anten	nas.	
CO4	Students w	vill be able to	o find the chard	acteristics of var	ious antenna	lS.

List of Experiments:

- 1. To study microwave components.
- 2. To study the characteristics of the reflex Klystron tube and to determine its electronic tuning range.
- 3. To determine the frequency and wavelength in a rectangular waveguide working in TE $_{10}$ mode.
- 4. To determine the standing wave ratio and reflection coefficient.
- 5. To study the I-V characteristics of gunn diode.
- 6. To study the magic Tee.
- 7. To study the isolator and attenuator.
- 8. To measure the coupling coefficient and directivity of a waveguide directional coupler.
- 9. To measure the polar pattern and the gain of a waveguide horn antenna.
- 10. To measure the insertion loss and attenuation.

ECE-408N	WIRELESS	&MOBILEO	COMMUNICA	ATIONLAB		
Lecture	Tutorial	Practical	Sessionals	Practical	Total	Time
-		3	40	60	100	3Hour
Purpose	To give the students an idea about the Wireless communication theory and technology using the NI-Labview software and RF communication module.					
			Course O	utcomes		
CO1	To study the wireless communication using NI-Labview					
CO2	To learn about the functioning of Universal Software Radio Peripheral (USRP)					
CO3	To learn the implementation of different analog modulation schemes using the USRP.					
CO4	To learn the implementation of different digital modulation schemes using the USRP.					

List of Experiments:

- 1. Introduction to NI-LabVIEW and familiarization with its basic functions.
- 2. Study of modulation toolkit and its usage in Wireless Communication.
- 3. Study the interfacing of hardware (USRP module) with the PC and configuring the same.
- 4. Implementation of AM using Software Defined Radio(SDR).
- 5. Implementation of FM using SDR with application such as transfer of files
- 6. Implementation of M-PSK transmitter using SDR concept.
- 7. Implementation of M-PSK receiver using SDR
- 8. Implementation of M-QAM transmitter using SDR.
- 9. Demonstrates the use of the Bluetooth functions to set up data transfer via Bluetooth between a server VI and a client VI.
- 10. Design two-dimensional convolution to perform image edge detection.
- 11. Implementation of M-QAM receiver using SDR.
- 12. Implementation of PSK Modulation system with Convolutional Coding.
- 13. Implementation of FSK Modulation system with BCH Coding.
- 14. Implementation of QAM Modulation system with Golay Coding