LECTURE PLAN

REFRIGERATION AND AIR-CONDITIONING

ME-302N

Month	Class	Topic/Chapter Covered	Academic Activity	Test/Assignment
Jan.	6 th Semester	Basics of heat pump & refrigerator; Carnot's refrigeration and heat pump	Teaching	
Jan.	6 th Semester	Units of refrigeration; COP of refrigerator and heat pump	Teaching	
Jan.	6 th Semester	Carnot's COP; ICE refrigeration	Teaching	
Jan.	6 th Semester	Evaporative refrigeration; refrigeration by expansion of air; refrigeration by throttling of gas	Teaching	
Jan.	6 th Semester	Vapour refrigeration system; steam jet refrigeration	Teaching	
Jan.	6 th Semester	thermoelectric cooling; adiabatic demagnetization	Teaching	
Jan.	6 th Semester	Basic principles of operation of air refrigeration system, Bell-Coleman air refrigerator	Teaching	
Jan.	6 th Semester	advantages of using air-refrigeration in aircrafts; disadvantages of air refrigeration in comparison to other cold producing methods	Teaching	
Jan.	6 th Semester	simple air refrigeration in air craft	Teaching	
Jan.	6 th Semester	simple evaporative type air refrigeration in aircraft; necessity of cooling the aircraft	Teaching	
Jan.	6 th	Simple Vapour Compression Refrigeration	Teaching	Assignment

	Semester	System		
Feb.	6 th Semester	Different compression processes :wet compression	Teaching	
Feb.	6 th Semester	dry or dry and saturated compression, superheated compression	Teaching	
Feb.	6 th Semester	Limitations of vapour compression refrigeration system if used on reverse Carnot cycle; representation of theoretical and actual cycle on T-S and P-H charts	Teaching	
Feb.	6 th Semester	effects of operating conditions on the performance of the system; advantages of vapour compression system over air refrigeration system	Teaching	
Feb.	6 th Semester	Methods of improving COP; flash chamber; flash inter cooler	Teaching	
Feb.	6 th Semester	optimum interstate pressure for two stage refrigeration system, single expansion and multi expansion processes	Teaching	
Feb.	6 th Semester	basic introduction of single load and multi load systems; Cascade systems.	Teaching	
Feb.	6 th Semester	Basic absorption system; COP and Maximum COP of the absorption system; actual NH ₃ absorption system; functions of various components; Li-Br absorption system	Teaching	
March	6 th Semester	selection of refrigerant and absorbent pair in vapour absorption system; Electro refrigerator; Comparison of Compression and Absorption refrigeration systems;	Teaching	
March	6 th Semester	nomenclature of refrigerants; desirable properties of refrigerants; cold storage and ice-plants	Teaching	
March	6 th Semester	Difference in refrigeration and air- conditioning	Teaching	Assignment

March	6 th Semester	; Psychometric properties of moist air :wet bulb, dry bulb, dew point temperature	Teaching	
March	6 th Semester	relative and specific humidity of moist air, temperature of adiabatic-saturation; empirical relation to calculate P _v in moist air	Teaching	
March	6 th Semester	Psychometric-chart, construction and use, mixing of two air streams	Teaching	
March	6 th Semester	sensible heating and cooling; latent heating and cooling	Teaching	
March	6 th Semester	Humidification and dehumidification; cooling with dehumidification; cooling with adiabatic humidification; heating and humidification	Teaching	
March	6 th Semester	By-pass factor of coil; sensible heat factor	Teaching	
March	6 th Semester	ADP of cooing coil; Air washer	Teaching	
March	6 th Semester	Classification; factors affecting air conditioning systems	Teaching	Assignment
April	6 th Semester	; comfort air-conditioning system	Teaching	
April	6 th Semester	winter air conditioning system; summer air- conditioning system; year round air conditioning. unitary air-conditioning system; central air conditioning system	Teaching	
April	6 th Semester	room sensible heat factor; Grand sensible heat factor; effective room sensible heat factor	Teaching	
April	6 th Semester	Inside design conditions; comfort conditions; components of cooling loads; internal heat gains from (occupancy, lighting, appliances, product and processes)	Teaching	
April	6^{th}	system heat gain (supply air duct, A.C. fan,	Teaching	

	Semester	return air duct); external heat gain (heat gain through building, solar heat gains through outside walls and roofs)		
April	6 th Semester	solar air temperature; solar heat gain through glass areas; heat gain due to ventilation and infiltration	Teaching	
April	6 th Semester	Transport air conditioning; evaporative condensers,	Teaching	
May	6 th Semester	cooling towers; heat pumps.	Teaching	Assignment

LECTURE PLAN

Tribology & Mechanical Vibration

ME-304N

Month	Class	Topic/Chapter Covered	Academic	Test/Assignment
			Activity	
Jan.	6 th	Elements of a vibratory system, S.H.M., degrees of	Teaching	
	Semester	freedom, Types of vibrations		
Jan.	6 th	Work done by a harmonic force, Beats	Teaching	
	Semester			
Jan.	6 th	Natural frequency by equilibrium and energy	Teaching	
	Semester	methods, equivalent spring, linear and torsional		
		systems, compound pendulum		
Jan.	6 th	Natural frequency by equilibrium and energy	Teaching	
	Semester	methods, equivalent spring, linear and torsional		
		systems, compound pendulum		
Jan.	6 th	Bifilar suspensions	Teaching	
	Semester			
Jan.	6 th	Trifilar suspensions	Teaching	
	Semester			
Jan.	6 th	Different types of damping	Teaching	
	Semester			
Jan.	6 th	Differential equations of damped free vibrations,	Teaching	
	Semester	initial conditions,		
Jan.	6 th	Logarithmic decrement	Teaching	
	Semester			
Jan.	6 th	Vibrational energy and logarithmic decrement.	Teaching	
	Semester			
Jan.	6 th	Sources of excitation, equations of motion with	Teaching	Assignment
	Semester	harmonic force		
Feb.	6 th	response of rotating and reciprocating unbalanced	Teaching	
	Semester	system		
Feb.	6 th	Support motion	Teaching	
	Semester			
Feb.	6 th	Vibration Isolation	Teaching	
	Semester			
I	1		1	1

Feb.	6 th Semester	Force and Motion transmissibility	Teaching	
Feb.	6 th Semester	Principle modes of vibrations	Teaching	
Feb.	6 th Semester	Influence co-efficient	Teaching	
Feb.	6 th Semester	Matrix method	Teaching	
Feb.	6 th Semester	Orthogonality principle	Teaching	Assignment
March	6 th Semester	Dunkerleys equation	Teaching	
March	6 th Semester	Matrix iteration method	Teaching	
March	6 th Semester	Holzer Method	Teaching	
March	6 th Semester	Rayleigh Method	Teaching	
March	6 th Semester	Rayleigh-Ritz methods	Teaching	
March	6 th Semester	Stodola method	Teaching	
March	6 th Semester	Hamilton principle	Teaching	
March	6 th Semester	Transverse vibrations of strings	Teaching	
March	6 th Semester	Longitudinal Vibrations of bars	Teaching	
March	6 th Semester	Lateral vibration of beams	Teaching	
March	6 th Semester	Torsional vibration of circular shafts.	Teaching	Assignment
April	6 th Semester	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of Tribology	Teaching	
April	6 th Semester	Basic modes of lubrication, properties of lubricants - physical and chemical, types of additives	Teaching	

April	6 th	extreme pressure lubricants, recycling of used oils	Teaching	
	Semester	and oil conservation		
April	6 th Semester	Introduction, laws of friction, kinds of friction, causes of friction, friction measurement	Teaching	
April	6 th Semester	Theories of friction, effect of surface preparation. Introduction to Wear, Types of wear	Teaching	
April	6 th Semester	Various factors affecting wear, measurement of wear	Teaching	
April	6 th Semester	Wear between solids and liquids, theories of wear	Teaching	Assignment

LECTURE PLAN

OPERATION RESEARCH

ME-306N

Month	Class	Topic/Chapter Covered	Academic Activity	Test/Assignment
	4		ricuvity	
Jan.	6 th	Introduction: Definition and Development	Teaching	
	Semester	of Operations Research		
Jan.	6 th	Necessity and scope of OR in Industry,	Teaching	
	Semester	Operations Research in Decision making		
Jan.	6 th	Models in OR. Fields of application.	Teaching	
	Semester	Difficulties and Limitation of OR.	_	
Jan.	6 th	General Linear Programming Problems:	Teaching	
	Semester	Introduction,		
T	cth			
Jan.	6	Maximization and minimization of function with	Teaching	
	Semester	or without Constraints		
Jan.	6 th	Formulation of a linear programming problem,	Teaching	
	Semester	Graphical method and Simplex method		
Jan.	6 th	Big M method. Degeneracy. Application of	Teaching	
	Semester	linear Programming (LPP) in Mechanical	6	
		Engineering		
	-th			
Jan.	6	The Transportation Problems: Mathematical	Teaching	Assignment
	Semester	formulation,		
Jan.	6 th	Stepping stone method	Teaching	
	Semester			
Jan.	6 th	Modified Distribution Method, Vogels	Teaching	
	Semester	Approximation Method		
Jan.	6 th	Solution of balanced and unbalanced	Teaching	
	Semester	transportation problems and case of degeneracy,		
Feb.	6 th	Assignment problems, Least time transportation	Teaching	Assignment

B. Tech. VI th	Semester	Mechanical	Engineering
---------------------------	----------	------------	-------------

	Semester	problem		
Feb.	6 th Semester	Network Analysis: CPM/PERT, Network Representation, Techniques for drawing network,	Teaching	
Feb.	6 th Semester	Numbering of events L: Fulkersen Rule, PERT calculations - Forward path,.	Teaching	
Feb.	6 th Semester	back-ward path, Slack, probability, comparison with PERT, Critical path,	Teaching	
Feb.	6 th Semester	Float, Project cost, Crashing the network,	Teaching	
Feb.	6 th Semester	updating (PERT and CPM)	Teaching	Assignment
Feb.	6 th Semester	Simulation : Basic concept of simulation, Applications of simulation, Merits and demerits of simulation,	Teaching	
Feb.	6 th Semester	Monte Carlo simulation, Simulation of Inventory system, Simulation of Queuing system.	Teaching	
March	6 th Semester	Waiting Line Theory: Basic queuing process, Basic structure of queuing models,	Teaching	
March	6 th Semester	some commonly known queuing situations, Kendall's notation, Solution to $M/M/1: \infty$ /FCFS models.	Teaching	
March	6 th Semester	Decision Theory: Steps in decision theory approach, Decision Machinery environment,	Teaching	
March	6 th Semester	Decision machining under certainty and uncertainty, Decision machining under condition of risk,	Teaching	
March	6 th Semester	Decision trees, Minimum enchained criteria,	Teaching	
March	6 th Semester	Advantages and limitations of decision tree solutions,	Teaching	
March	6 th	Post Optimality.	Teaching	Assignment

B. Tech. VI th	Semester	Mechanical	Engineering
---------------------------	----------	------------	-------------

	Semester			
March	6 th Semester	Queuing Theory : Introduction, Applications of queuing Theory	Teaching	
March	6 th Semester	Waiting time and idle time costs, Single channel queuing theory	Teaching	
March	6 th Semester	multi-channel queuing theory with Poisson arrivals	Teaching	
March	6 th Semester	Exponential services, Numerical on single channel and multi channel queuing theory.	Teaching	
April	6 th Semester	Game Theory: Theory of games	Teaching	
April	6 th Semester	competitive games, Rules and Terminology in game Theory	Teaching	
April	6 th Semester	Rules for game theory- saddle point, dominance, Mixed strategy (2 x2 games)	Teaching	
April	6 th Semester	Mixed strategy (2 x n games or m x 2 games)	Teaching	
April	6 th Semester	Mixed strategy (3 x3 games)	Teaching	
April	6 th Semester	Two person zero sum games,	Teaching	
April	6 th Semester	N-person zero sum games	Teaching	Assignment

Lecture Plan

Computer Aided Design and Manufacturing

ME-308N

Month	Class	Topic/Chapter Covered	Academic Activity	Test/Assignment
Jan.	6 th	Introduction to CAD/CAM, Historical	Teaching	
	Semester	Development		
Jan.	6 th	Industrial look at CAD/CAM Application of	Teaching	
	Semester	CA/CAM, Display devices, Input/ Output Devices, CPU		
Jan.	6 th Semester	Introduction to CIM, Definition, Nature of Elements of CIM	Teaching	
Jan.	6 th	CIM Wheel, Introduction to computer aided	Teaching	
	Semester	quality control		
Jan.	6 th	Contact and Non Conduct Inspection	Teaching	
	Semester	Method		
Jan.	6 th	Wireframe modeling	Teaching	
	Semester			
Jan.	6 th	Representation of curves, Parametric and	Teaching	
	Semester	non-parametric curves		
Jan.	6 th	Straight lines, Hermite cubic splines	Teaching	
	Semester			
Jan.	6 th	B splines curves	Teaching	
	Semester			
Jan.	6 th	Plane surface, ruled surface	Teaching	
	Semester			
Jan.	6 th	Surface of revolution, bi-cubic surface	Teaching	Assignment
	Semester			
Feb.	6 th	Bezier surface, B spline surface	Teaching	
	Semester			
Feb.	6 th	Solid modeling, boundary representation	Teaching	
	Semester			
Feb.	6 th	Sweeping, parametric solid modeling	Teaching	
	Semester			

Feb.	6 th Semester	Introduction, Transformation of points & line	Teaching	
Feb.	6 th Semester	2-D translation, rotation	Teaching	
Feb.	6 th Semester	Reflection, Scaling	Teaching	
Feb.	6 th Semester	Shearing and combined transformation	Teaching	
Feb.	6 th Semester	Homogeneous coordinates, Orthographic Projections	Teaching	Assignment
March	6 th Semester	Perspective Projections	Teaching	
March	6 th Semester	Group technology	Teaching	
March	6 th Semester	Part families	Teaching	
March	6 th Semester	Part classification and coding, optiz method	Teaching	
March	6 th Semester	Product flow analysis,	Teaching	
March	6 th Semester	Machine cell Design, Advantages of GT	Teaching	
March	6 th Semester	Numerical control, Types of NC systems	Teaching	
March	6 th Semester	MCU & other components	Teaching	
March	6 th Semester	Co-ordinate system	Teaching	
March	6 th Semester	NC manual part programming	Teaching	
March	6 th Semester	G & M codes	Teaching	Assignment
April	6 th Semester	Part program for simple parts,	Teaching	
April	6 th	Computer assisted part programming	Teaching	

	Semester			
April	6 th	Introduction, FMS component	Teaching	
	Semester			
April	6 th	Types of FMS, FMS layout	Teaching	
	Semester			
April	6^{th}	planning for FMS, advantage and	Teaching	
	Semester	applications		
April	6 th	Introduction, conventional process planning,	Teaching	
	Semester	Steps in variant process planning		
April	6 th	Types of CAPP, planning for CAPP	Teaching	Assignment
	Semester			

Lecture Plan

Machine Design-II

ME-310N

Month	Class	Topic/Chapter Covered	Academic A stivity	Test/Assignment
			Activity	
Jan.	6 th	Gears-types and application and gear terminology	Teaching	
	Semester			
Jan.	6 th	Law of gearing-conjugate action and interference	Teaching	
	Semester	in gears		
Jan.	6 th	Gear tooth profiles, involute profile -basics,	Teaching	
	Semester	Influence of number of teeth and pressure angle		
Jan.	6 th	Analysis of forces on spur, and helical gears and	Teaching	
	Semester	Lewis equation for design		
Jan.	6 th	Dynamic loading and wear-Buckingham equations	Teaching	
	Semester	for design		
Jan.	6 th	Force analysis on bevel and worm gears	Teaching	
	Semester			
Jan.	6 th	Design approach for bevel gears- equivalent tooth	Teaching	
	Semester			
Jan.	6 th	Design of fixed ratio gear box- general design	Teaching	
	Semester	procedure		
Jan.	6 th	Design of Flat Belt Drive and type of Flat belt	Teaching	
	Semester	drive		
Jan.	6^{th}	Design of Cast iron flat belt pulley	Teaching	
	Semester			
Jan.	6^{th}	Design of V-Belt Drive and Types of V-belts and	Teaching	Assignment
	Semester	pulleys		
Feb.	6 th	Design of Rope Drive and selection of wire rope.	Teaching	
	Semester			
Feb.	6 th	Design of chain drive and selection of chains.	Teaching	
	Semester			
Feb.	6 th	Type of clutches and design of single plate clutch.	Teaching	
	Semester			
Feb.	6 th	Design of multiple disc clutch.	Teaching	

	Semester			
Feb.	6 th Semester	Type of brakes and Design of single shoe brake	Teaching	
Feb.	6 th Semester	Design of Double Shoe Brake	Teaching	
Feb.	6 th Semester	Helical Springs, Stresses and Deflections	Teaching	
Feb.	6 th Semester	Design Principles of Helical Springs	Teaching	Assignment
March	6 th Semester	Stresses and Deflections, Design principles of leaf Springs	Teaching	
March	6 th Semester	Types of Sliding contact Bearings and introduction to Hydrodynamic Lubricated Bearings	Teaching	
March	6 th Semester	Design of Journal Bearing	Teaching	
March	6 th Semester	Types of Rolling contact bearings and introduction to ball Bearings & Roller bearings	Teaching	
March	6 th Semester	Design & Selection of Rolling contact bearings.	Teaching	
March	6 th Semester	Design of cam & Follower	Teaching	
March	6 th Semester	Design of Cylinder	Teaching	
March	6 th Semester	Design of Piston	Teaching	
March	6 th Semester	Design of Piston	Teaching	
March	6 th Semester	Design of Crank Shaft (Case-I)	Teaching	
March	6 th Semester	Design of Crank Shaft (Case-II)	Teaching	Assignment
April	6 th Semester	Design of Connecting rod	Teaching	
April	6 th Semester	Design of Connecting rod	Teaching	
April	6 th	Design of Crane Hook	Teaching	

	Semester			
April	6 th	Fly wheel basic concepts -design requirements	Teaching	
	Semester			
April	6^{th}	Fly wheel basic concepts -design requirements	Teaching	
	Semester			
April	6^{th}	Moment diagram and energy estimations	Teaching	
	Semester			
April	6 th	Moment diagram and energy estimations	Teaching	Assignment
	Semester			

	Topic/Chapter Covered
1.	Elements of a vibratory system, S.H.M., degrees of freedom, Types of vibrations
2.	Work done by a harmonic force, Beats
3.	Natural frequency by equilibrium and energy methods,
<mark>4.</mark>	equivalent spring, linear and torsional systems, compound pendulum
5.	Natural frequency by equilibrium and energy methods, equivalent spring, linear and torsional systems, compound pendulum
<mark>6.</mark>	Bifilar suspensions
7.	Trifilar suspensions
<mark>8.</mark>	Different types of damping
<mark>9.</mark>	Differential equations of damped free vibrations, initial conditions,
10.	Differential equations of damped free vibrations, initial conditions,
11.	Logarithmic decrement
12.	Vibrational energy and logarithmic decrement.
13.	Sources of excitation, equations of motion with harmonic force
14.	Sources of excitation, equations of motion with harmonic force
<mark>15.</mark>	Response of rotating and reciprocating unbalanced system
<mark>16.</mark>	Response of rotating and reciprocating unbalanced system
17.	Support motion
<mark>18.</mark>	Vibration Isolation
19.	Vibration Isolation
20.	Force and Motion transmissibility
21.	Force and Motion transmissibility
22.	Principle modes of vibrations
23.	Influence co-efficient
24.	Matrix method
25.	Orthogonality principle
26.	Orthogonality principle
27.	Dunkerleys equation

28.	Matrix iteration method
<mark>29.</mark>	Holzer Method
<mark>30.</mark>	Rayleigh Method
31.	Rayleigh-Ritz methods
32.	Stodola method
<mark>33.</mark>	Hamilton principle
<mark>34.</mark>	Transverse vibrations of strings
35.	Longitudinal Vibrations of bars
<mark>36.</mark>	Lateral vibration of beams
37.	Torsional vibration of circular shafts.
<mark>38.</mark>	Torsional vibration of circular shafts.
<mark>39.</mark>	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of Tribology
39. 40.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of Tribology Basic modes of lubrication, properties of lubricants - physical and chemical, types of additives
39. 40. 41.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of Tribology Basic modes of lubrication, properties of lubricants - physical and chemical, types of additives Extreme pressure lubricants, recycling of used oils and oil conservation
39. 40. 41. 42.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of friction
39. 40. 41. 42. 43.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of Tribology Basic modes of lubrication, properties of lubricants - physical and chemical, types of additives Extreme pressure lubricants, recycling of used oils and oil conservation Introduction, laws of friction, kinds of friction, causes of friction friction measurement
39. 40. 41. 42. 43. 44.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of frictionfriction measurementTheories of friction, effect of surface preparation
39. 40. 41. 42. 43. 44. 45.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of frictionfriction measurementTheories of friction, effect of surface preparationIntroduction to Wear, Types of wear
39. 40. 41. 42. 43. 44. 45. 46.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of frictionfriction measurementTheories of friction, effect of surface preparationIntroduction to Wear, Types of wearVarious factors affecting wear, measurement of wear
39. 40. 41. 42. 43. 44. 45. 46. 47.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of frictionfriction measurementTheories of friction, effect of surface preparationIntroduction to Wear, Types of wearVarious factors affecting wear, measurement of wearMeasurement of wear
39. 40. 41. 42. 43. 44. 45. 46. 47. 48.	Introduction to Tribology, Tribology in design, Tribology in industry, economic aspects of TribologyBasic modes of lubrication, properties of lubricants - physical and chemical, types of additivesExtreme pressure lubricants, recycling of used oils and oil conservationIntroduction, laws of friction, kinds of friction, causes of frictionfriction measurementTheories of friction, effect of surface preparationIntroduction to Wear, Types of wearVarious factors affecting wear, measurement of wearMeasurement of wearWear between solids and liquids