LECTURE PLAN

Materials Engineering

ES-20 4

Month	Class	Topic/Chapter Covered	Academic	Test/Assignment
	4.1		Activity	
Jan.	4th	Crystallography:	Teaching	
	Semester	Review of crystal structure		
Jan.	4th Semester	Space lattice ,Coordination no.	Teaching	
Jan.	4th	No. of atoms per unit cell	Teaching	Assignment
	Semester			
Jan.	4th		Teaching	
	Semester	Atomic packing Factor	_	
Jan.	4th		Teaching	
	Semester		C C	
Jan.	4th		Teaching	
	Semester		C C	
Jan.	4th	Numerical problem related to	Teaching	
	Semester	crystallography	U	
Jan.	4th		Teaching	
	Semester		U	
Jan.	4th	Imperfection in metal crystals:	Teaching	
	Semester	Crystal imperfectins and their	U	
		classification		
Jan.	4th		Teaching	
	Semester	Point defects	U	
Jan.	4th		Teaching	
	Semester		U	
Ian	<u>Ath</u>	line defects	Teaching	
Jan	Semester		Teaching	
	Bennester			
Jan.	4th	Edge and screw dislocatios	Teaching	
	Semester	6	6	
Jan	4th		Teaching	
	Semester	Surface defects	6	
Jan	4th		Teaching	
	Semester		U	
Jan.	4th	Volume defects	Teaching	
	Semester		U	
Jan	4th	Introduction to Engineering	Teaching	
	Semester	Materials and standard Materials	U	
		Designation: Steel Terminology and		
		Introduction to Engineering		
		materials		
Jan	4th	Standard Designation system for	Teaching	
	Semester	steels		

Jan	4th Semester	Indian Standard specifications for steels as per BIS: Based on Ultimate Tensile Strength and based on Composition	Teaching	
Jan	4 th Semester	AISI-SAE standard designation for Steels and Aluminum Alloys	Teaching	
feb	4^{th}		Teaching	
	Semester	Allow systems: Allow Systems, Solid		
feb	4^{th}	solutions	Teaching	
	Semester	•		
feb	4^{th}		Teaching	
	Semester			
feb	4 th Semester	Hume Rothery's	Teaching	Assignment
feb	4 th Semester	Phase Diagrams, Intermediate phases	Teaching	
feb	4 th Semester	Gibbs Phase Rule, Cooling curves	Teaching	
feb	4^{th}	The Lever Rule, binary phase	Teaching	
	Semester	diagrams		
feb	4th Semester	Application of phase discuss	Teaching	
feb	4th Semester	Application of phase diagram	Teaching	
feb	4 th Semester	Micro constituents of Fe-C system	Teaching	
feb	4 th	And Allotropic forms of iron	Teaching	
	Semester	1	U	
feb	4^{th}		Teaching	
	Semester	Iron-iron carbide phase diagram.		
feb	4 ^{cm}	Modified Iron Carbon Phase	Teaching	
fab		Diagrams	Taaching	
160	4 Semester		Teaching	
feb	4 th		Teaching	
100	Semester	TTT Curve	Teaching	
feb	4 th Semester	Heat treatment of steels Annealising Normalising	Teaching	
feb	4 th		Teaching	
	Semester	Hardening, Tempering		
feb	4 th	Care Handaning A	Teaching	
	Semester	Case Hardening, Ageing		

B. Tech. IVth Semester Mechanical Engineering

	4^{th}	Surface hardening, Mass effect	Teaching	
feb	Semester			
feb	4^{th}	Equipments for Heat Treatment,	Teaching	
	Semester	Major Defects in Metals or Alloys		
feb	4^{th}	due to faulty Heat treatment.	Teaching	
	Semester			
feb	4^{th}		Teaching	Assignment
	Semester			
March	4^{th}	Deformation of Metal:	Teaching	
	Semester	Elastic and Plastic Deformation,		
		Mechanism of Plastic Deformation		
March	4^{th}	Slip: Critical Pasalyad Shaar Strass	Teaching	
	Semester	Shp, Chucai Resolved Shear Suess		
March	4^{th}	Twinning, Conventional and True	Teaching	Assignment
	Semester	Stress Strain Curves for		
		Polycrystalline Materials		

March	4 th Semester	Yield Point Phenomena, Bauschinger	Teaching	
March	4 th Semester	directional and progressive solidification, centerline feeding	Teaching	
		resistance,		
March	4^{th}	Failure of Materials: Introduction to	Teaching	
	Semester	fatigue		
	4th	Theory about fatigue fracture and	Teaching	
March	Semester	some practical examples		
	4th		Teaching	
March	Semester	Mechanismof Fatigue Failure		
Manal	4^{th}		Teaching	
March	Semester	Fatigue Life calculations		
	4^{th}	Estimo Tests	Teaching	
March	Semester	Taligue Tests		
	4^{th}	Theory of fatigue	Teaching	
March	Semester			
	4^{th}		Teaching	
	Semester			
March		An over view of the whole unit		
	4^{th}		Teaching	
March	Semester		2	
	4^{th}	Creep:	Teaching	
Marak	Semester	Creep curve	U	
warch				
	4^{th}	Factors affecting Creep, Mechanism	Teaching	
March	Semester	of Creep		
	4^{th}	Creep Resistant Material, Creep	Teaching	

March	Semester	Fracture and doubts		
	4 th			
March	Semester		Teaching	
	4^{th}		Teaching	
March	Δ^{th}		Teaching	
March	Semester	Creep Test, Stress Rupture test	Teaching	
April	4 th		Teaching	
April	Semester		Taaahing	Accionmont
Арт	4 Semester	Casting defects, their causes and remedies	Teaching	Assignment
April	4^{th}		Teaching	
	Semester	Introduction to metallograhy:		
April	4 th Semester	Metallography, Phase analysis	Teaching	
April	4 th Semester	Dendritic growth, Cracks and other defects	Teaching	Assignment
April	4 th Semester	Corrosion analysis, Intergranular attack (IGA)	Teaching	
	201102001			
April	4 th Semester	Coating thickness and integrity, Inclusion size, shape and distribution	Teaching	
April	4 th	Weld and heat-affected zones (HAZ).		
1	Semester	Distribution and orientation of composite fillers		
April	4^{th}	Graphite nodularity, Intergranular		
	Semester	fracturing		
April	4^{th}	Material		
	Semester	characterization techniques:		
		Characterization techniques suchas X-		
		Kay Diffraction (ARD)		
April	4 th	Scanning Electron Microscopy,		
	Semester	transmission electron microscopy		
April	4 th Semester	atomic force microscopy		Assignment
April	4 th Semester	scanning tunneling microscopy,		
April	4 th Semester	Atomic absorption spectroscopy		
April	4^{th}	Discussion and		
	Semester	Revision till end of the Semester		

LECTURE PLAN

Fluid Mechanics & Fluid Machines

MEC-201A

Month	Class	Topic/Chapter Covered	Academic	Test/
			Activity	Assignment
Jan.	4 th Semester	Fluid Properties: Definition of fluid,	Teaching	
		Newton's law of viscosity.	_	
Jan.	4 th Semester	Units and dimensions-Properties of	Teaching	
		fluids, mass density, weight density,	_	
		specific volume, specific gravity.		
Jan.	4 th Semester	Viscosity, Compressibility.	Teaching	
Jan.	4 th Semester	Surface tension and Capillarity.	Teaching	
Jan.	4 th Semester	Fluid Kinematics: Types of fluid flows,	Teaching	
		Stream, Streak and Path lines.		
Jan.	4 th Semester	Flow rate and continuity equation.	Teaching	
Feb.	4 th Semester	Differential equation of continuity in	Teaching	
		cartesian and polar coordinates.		
Feb.	4 th Semester	Rotation and Vorticity, Circulation.	Teaching	
Feb.	4 th Semester	Stream and Potential functions, Flow	Teaching	Assignment
		Net. Problems.	e	e
Feb.	4 th Semester	Fluid Dynamics: Concept of system and	Teaching	
		control volume, Euler's equation.	C C	
Feb.	4 th Semester	Navier-Stokes equation.	Teaching	
Feb.	4 th Semester	Bernoulli's equation and its practical	Teaching	
		applications.	e	
Feb.	4 th Semester	Impulse momentum equation. Problems.	Teaching	
Feb.	4 th Semester	Dimensional Analysis: Need for	Teaching	
		dimensional analysis – methods of	C C	
		dimension analysis		
Feb.	4 th Semester	Dimensionless parameters – application	Teaching	Assignment
		of dimensionless parameters. Problems.		-
Feb.	4 th Semester	Hydraulic Pumps: Introduction, theory	Teaching	
		of Rotodynamic machines.		
March	4 th Semester	Classification, various efficiencies.	Teaching	
March	4 th Semester	Velocity components at entry and exit of	Teaching	
		the rotor, velocity triangles.		
March	4 th Semester	Centrifugal pumps, working principle,	Teaching	
		work done by the impeller.		
March	4 th Semester	Minimum starting speed, performance	Teaching	
		curves, Cavitation in pumps.		
March	4 th Semester	Reciprocating pumps, working principle,	Teaching	
		Indicator diagram.		
March	4 th Semester	Effect of friction and acceleration, air	Teaching	Assignment
		vessels, Problems.		Ũ
March	4 th Semester	Hydraulic Turbines: Introduction,	Teaching	
		Classification of water turbines, heads		
		and efficiencies, velocity triangles.		

March	4 th Semester	Axial, radial and mixed flow turbines.	Teaching	
March	4 th Semester	Pelton wheel, working principles, work	Teaching	
		done.	_	
March	4 th Semester	Francis turbine, working principles, work	Teaching	
		done.		
April	4 th Semester	Kaplan turbines, working principles,	Teaching	
		work done.		
April	4 th Semester	Design of turbines, draft tube and types.	Teaching	
April	4 th Semester	Specific speed, unit quantities.	Teaching	
April	4 th Semester	Performance curves for turbines.	Teaching	
April	4 th Semester	Governing of turbines. Problems.	Teaching	Assignment
April	4 th Semester	Turbulent Flow Through Pipes: Darcy	Teaching	
		Weisbach equation, friction factor.		
April	4 th Semester	Moody's diagram, minor losses in pipes.	Teaching	
April	4 th Semester	Hydraulic gradient and total energy lines.	Teaching	
April	4 th Semester	Series and parallel connection of pipes,	Teaching	
		branched pipes; equivalent pipe.		
April	4 th Semester	Power transmission through pipes.	Teaching	
		Problems.		
April	4 th Semester	Boundary Layer Flow: Concept of	Teaching	
		boundary layer, measures of boundary		
		layer thickness.		
May	4 th Semester	Blasius solution, von-Karman	Teaching	
		momentum integral equation.		
May	4 th Semester	Laminar and turbulent boundary layer	Teaching	
		flows.		
May	4 th Semester	Separation of boundary layer and its	Teaching	Assignment
		control. Problems.		

LECTURE PLAN

Instrumentation & Control

MEC-208A

Month	Class	Topic/Chapter Covered	Academic	Test/Assignment
			Activity	
Jan	4 th Sem.	Introduction, typical	Teaching	
		applications of instrument		
		systems, functional elements of		
		a measurement system.		
Jan	4 th Sem.	Classification of instruments,	Teaching	
		standards and calibration.		
Jan	4 th Sem.	Static and dynamic	Teaching	
		characteristics of measurement		
		systems.		
Jan	4 th Sem.	Static and dynamic	Teaching	Assignment
		characteristics of measurement		
		systems.		
Jan	4 th Sem.	Statistical analysis of data and	Teaching	
		measurement of uncertainty		
Jan	4 th Sem.	Statistical analysis of data and	Teaching	
		measurement of uncertainty		
Jan	4 th Sem.	Statistical analysis of data and	Teaching	Assignment
		measurement of uncertainty		
Jan	4 th Sem.	Statistical analysis of data and	Teaching	Assignment
		measurement of uncertainty		
Feb.	4 th Sem.	Introduction and classification,	Teaching	Assignment
Feb.	4 th Sem.	transducer selection and	Teaching	
		specifications,		
Feb.	4 th Sem.	Primary sensing elements,	Teaching	
		resistance transducers,		
Feb.	4 th Sem.	Variable inductance type	Teaching	
		transducers, capacitive		
		transducers		

Feb.	4 th Sem.	Piezo-electric transducers,	Teaching	
		strain gauges.		
Feb.	4 th Sem.	Smart Sensors: Introduction,	Teaching	
		architecture of smart sensor,		
		bio sensor and physical sensor.		
Feb.	4 th Sem.	Piezo-resistive pressure sensor,	Teaching	
		microelectronic sensor.		
Feb.	4 th Sem.	Force and weight measurement	Teaching	Assignment
		system,		
Feb.	4 th Sem.	Measurement of torque, shaft	Teaching	
		power		
Feb.	4 th Sem.	Speed and velocity: electrical	Teaching	
		and contactless tachometers.		
Feb.	4 th Sem.	Acceleration: vibrometers,	Teaching	Assignment
		seismic and piezo-electric		
		accelerometer.		
Feb.	4 th Sem.	Basic terms, Pressure: Liquid	Teaching	
		column manometers		
Feb.	4 th Sem.	Elastic type pressure gauges,	Teaching	
		electrical types for pressure		
		and vacuum.		
March	4 th Sem.	14. Temperature	Teaching	Assignment
		measuring instruments: RTD		
		sensors, NTC		
		thermistor, thermocouples		
March	4 th Sem.	Semiconductor based sensors.	Teaching	
March	4 th Sem.	Flow Measurement: drag force	Teaching	
		flow meter, turbine flow meter,		
		electronic flow meter,		
		electromagnetic flow meter,		
		hot-wire anemometer.		
March	4 th Sem.	Flow Measurement: drag force	Teaching	Assignment
		flow meter, turbine flow meter,		

		electronic flow meter,		
		electromagnetic flow meter,		
		hot-wire anemometer.		
March	4 th Sem.	Humidity definitions,	Teaching	
		Humidity measuring devices.		
March	4 th Sem.	Density and Specific Gravity,	Teaching	
		Basic terms		
March	4 th Sem.	Density measuring devices,	Teaching	Assignment
		Density application		
		considerations, Viscosity.		
March	4 th Sem.	Viscosity measuring	Teaching	
		instruments.		
March	4 th Sem.	16. Basic terms	Teaching	
		used in pH, pH measuring		
		devices, pH application		
		considerations. Problems.		
April	4 th Sem.	Introduction, basic components	Teaching	
		of control system.		
April	4 th Sem.	Classification : closed loop and	Teaching	Assignment
		open loop control system,		
		transfer function, block		
		diagram representation of		
		closed loop system		
April	4 th Sem.	Reduction techniques,	Teaching	
		mathematical modelling of		
		various mechanical systems		
		and their analogy with		
		electrical systems, signal flow		
		graph and its representation.		
April	4 th Sem.	Mathematical modelling of	Teaching	
		various mechanical systems		
		and their analogy with		

		electrical systems, signal flow		
		graph and its representation.		
April	4 th Sem.	Mathematical modelling of	Teaching	Assignment
April	4 th Sem.	various mechanical systems	Teaching	
		and their analogy with		
		electrical systems, signal flow		
		graph and its representation.		
April	4 th Sem.	Basics of actuatorspneumatic	Teaching	
		controller, hydraulic controller		
		and their comparison		
May	4 th Sem.	Actuators pneumatic controller	Teaching	
May	4 th Sem.	Hydraulic controller and their	Teaching	
		comparison		