BS-136A	Calculus and Ordinary Differential Equations						
L	T	P	Credit	Major Test	Minor Test	Total	Time
3	1		4	75	25	100	3 h
Purpose	To familiarize the prospective engineers with techniques inmultivariate integration, ordinary and partial differential equations and complex variables.						
Course Outcomes							
C01	To introduce effective mathematical tools for the solutions of differential equations that model physical processes.						
CO 2	To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.						
CO 3	To introduce the tools of differentiation of functions of complex variable that are used in various techniques dealing engineering problems.						
CO 4	To study various fundamental concepts of Vector Calculus.						
CO 5	To introduce the tools of integration of functions of complex variable that are used in various techniques dealing engineering problems.						
CO 6	To provide the conceptual knowledge of Engineering mathematics.						

UNIT-I

(10 hrs)
First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
Ordinary differential equations of higher orders:
Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

(10 hrs)
Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)
Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III
(10hrs)
Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence \& Curl and their properties, Directional derivative.
Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

(10 hrs)
Complex Variable - Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findingharmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) andtheir properties;
Complex Variable - Integration:Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (withoutproof), Taylor's series,zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson,Reprint, 2002.
2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley \& Sons, 2006.
3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.
4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.
5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.
7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill,2004.
9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Note: The paper setter will set the paper as per the question paper templates provided.

LECTURE PLAN

Subject Name	Calculus and Ordinary Differential Equations
Subject Code	BS-136A
Course:-	B.Tech. (ME)
Semester:-	2nd Semester

Lecture Topic

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24

Exact Differential Equation
do
linear and Bernoulli's equations
Euler's equations
do
Equations solvable for p ,equations solvable for y , equations solvable for x do
Clairaut's type
Second order linear differential equations with constant coefficients
Method of variation of parameters
Cauchy and Legendre's linear differential equations
do
Double integrals (Cartesian)
Change of order of integration in double integrals
Change of variables (Cartesian to polar)
Areas and Volumes
Triple integrals (Cartesian)
Orthogonal curvilinear coordinates
Simple applications involving cubes
do
Sphere and rectangular parallelepipeds do
Scalar and Vector point functions,
Gradient and its properties, Directional derivative

L25
L26
L27
L28
L29
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L41
L42
L43
L44
L45
L46
L47
L48
do
divergence \& Curl and their properties do
Line integrals, surface integrals, volume integrals
do
Green Theorem
Gauss Theorem
Stokes Theorem
Differentiation, Cauchy-Riemann equations do
Analytic functions, harmonic functions, finding harmonic conjugate do
Elementary analytic functions (exponential, trigonometric, logarithm) and their properties
do
do
Contour integrals,
Cauchy-Goursat theorem (without proof)
Cauchy Integral formula (withoutproof)
Taylor's series
Zeros of analytic functions
Singularities
Laurent's series; Residues, Cauchy Residue theorem (without proof) do
Revision

Tutorial Sheet-1

Q. 1 Solve $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$
Q. 2 Solve $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos x$
Q. 3 Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$
Q. $4 \quad$ Solve $\quad x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$
Q. 5 Solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$

Tutorial Sheet-2

Q. 1 Calculate $\iint r^{3} d r d \theta$ over the area include between the circles $\mathrm{r}=2 \sin \theta \& \mathrm{r}=4 \sin \theta$.
Q. 2 Evaluate the following integrals. (i) $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$
(ii) $\iint x y d x d y$ over the positive quadrant of the Circle $x^{2}+y^{2}=a^{2}$
Q. 3 Calculate the area included between the curve $\mathrm{r}=\mathrm{a}(\sec \theta+\cos \theta)$ and its asymptote.
Q. 4 Evaluate the following Integrals. (i) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$
(ii) $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$
Q. 5 Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$
Q. 6 Evaluated $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.

Tutorial Sheet-3

Q. 1 In what direction from $(3,1,-2)$ is the directional derivative of $e=x^{2} y^{2} z^{4}$ is maximum? Find also the magnitude of this maximum.
Q. 2 Find $\operatorname{div} F$ and curl F where $F=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
Q. 3 Find the value of a if the vector $\left(a x^{2} y+y z\right) I+\left(x y^{2}-x z^{2}\right) J+\left(2 x y z-2 x^{2} y^{2}\right) K$ has zero divergence. Find the curl of the above vector which has zero divergence.
Q. 4 Show that $\nabla .(\phi \nabla \psi-\psi \nabla \phi)=\phi \nabla^{2} \psi-\psi \nabla^{2} \phi$
Q. 5 Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
Q. 6 Verify Stoke's theorem for the vector field $F=(2 x-y) I-y z^{2} J-y^{2} z k$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the xy - plane.
Q. 7 Verify divergence theorem for $\mathrm{F}=\left(\mathrm{x}^{2}-\mathrm{yz}\right) \mathrm{I}+\left(\mathrm{y}^{2}-\mathrm{zx}\right) \mathrm{J}+\left(\mathrm{z}^{2}-\mathrm{xy}\right) \mathrm{K}$ takes over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

Tutorial Sheet-4

Q. 1 Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though C-R equations are satisfied at that point.
Q. 2 If $f(z)$ is a regular function of z. Prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

Q. 3 Find the regular function whose imaginary part is $e^{-x}(x \sin y-y \cos y)$
Q. 4 Show that the polar form of Cauchy-Riemann equations

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} \text {. Deduce that } \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

Sample Paper BT-II Calculus and Ordinary Differential Equations Paper: BS-136A

Time: Three Hours

Note: The Examiners will set eight questions, taking two from each unit. The students are required to attempt five questions in all selecting at least one from each unit. All questions will carry equal marks.

UNIT-I

Q. 1 (a) Solve $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$
(b) Solve $p^{3}-p\left(x^{2}+x y+y^{2}\right)+x y(x+y)=0$
Q. 2 (a) Solve $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-(2 x+3) \frac{d y}{d x}-12 y=6 x$
(b) Solve by the Method of Variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \log x
$$

UNIT-II

Q.3(a) Calculate $\iint r^{3} d r d \theta$ over the area include between the circles $\mathrm{r}=2 \sin \theta \& \mathrm{r}=4 \sin \theta$.
(b) Evaluate $\int_{0}^{\frac{a}{2}} \int_{y}^{\sqrt{a^{2}-y^{2}}} \log \left(x^{2}+y^{2}\right) d x d y \quad(a>0)$
Q. 4 (a) Find the volume bounded by the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ and the planes $\mathrm{y}+\mathrm{z}=4$ and $\mathrm{z}=0$.
(b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{\left(1-x^{2}-y^{2}-z^{2}\right)}} \quad$ by changing to spherical coordinates.

UNIT-III

Q. 5 (a) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$
(b) Find Interpretation of divergence.
Q.6(a) Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
(b) Verify Stoke's theorem for the vector field $F=(2 x-y) I-y z^{2} J-y^{2} z k$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the xy-plane.

UNIT-IV

Q.7(a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though C-R equations are satisfied at that point.
(b) If $f(z)$ is a regular function of z. Prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

Q.8(a) Find the regular function whose imaginary part is $e^{-x}(x \sin y-y \cos y)$
(b) Show that the polar form of Cauchy-Riemann equations

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} . \text { Deduce that } \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

